Given a string S, we need to write a program to check if it is possible to construct the given string S by performing any of the below operations any number of times. In each step, we can:
- Add any character at the end of the string.
- or, append the string to the string itself.
The above steps can be applied any number of times. We need to write a program to print the minimum steps required to form the string. Examples:
Input : aaaaaaaa Output : 4 Explanation: move 1: add 'a' to form "a" move 2: add 'a' to form "aa" move 3: append "aa" to form "aaaa" move 4: append "aaaa" to form "aaaaaaaa" Input: aaaaaa Output: 4 Explanation: move 1: add 'a' to form "a" move 2: add 'a' to form "aa" move 3: add 'a' to form "aaa" move 4: append "aaa" to form "aaaaaa" Input: abcabca Output: 5
The idea to solve this problem is to use Dynamic Programming to count the minimum number of moves. Create an array named dp of size n, where n is the length of the input string. dp[i] stores the minimum number of moves that are required to make substring (0…i). According to the question there are two moves that are possible:
- dp[i] = min(dp[i], dp[i-1] + 1) which signifies addition of characters.
- dp[i*2+1] = min(dp[i]+1, dp[i*2+1]), appending of string is done if s[0…i]==s[i+1..i*2+1]
The answer will be stored in dp[n-1] as we need to form the string(0..n-1) index-wise.
Below is the implementation of the above idea:
C++
// CPP program to print the // Minimal moves to form a string // by appending string and adding characters #include <bits/stdc++.h> using namespace std; // function to return the minimal number of moves int minimalSteps(string s, int n) { int dp[n]; // initializing dp[i] to INT_MAX for ( int i = 0; i < n; i++) dp[i] = INT_MAX; // initialize both strings to null string s1 = "" , s2 = "" ; // base case dp[0] = 1; s1 += s[0]; for ( int i = 1; i < n; i++) { s1 += s[i]; // check if it can be appended s2 = s.substr(i + 1, i + 1); // addition of character takes one step dp[i] = min(dp[i], dp[i - 1] + 1); // appending takes 1 step, and we directly // reach index i*2+1 after appending // so the number of steps is stored in i*2+1 if (s1 == s2) dp[i * 2 + 1] = min(dp[i] + 1, dp[i * 2 + 1]); } return dp[n - 1]; } // Driver Code int main() { string s = "aaaaaaaa" ; int n = s.length(); // function call to return minimal number of moves cout << minimalSteps(s, n); return 0; } |
Java
// Java program to print the // Minimal moves to form a string // by appending string and adding characters import java.util.*; class GFG { // function to return the minimal number of moves static int minimalSteps(String s, int n) { int []dp = new int [n]; // initializing dp[i] to INT_MAX for ( int i = 0 ; i < n; i++) dp[i] = Integer.MAX_VALUE; // initialize both strings to null String s1 = "" , s2 = "" ; // base case dp[ 0 ] = 1 ; s1 += s.charAt( 0 ); for ( int i = 1 ; i < n; i++) { s1 += s.charAt(i); // check if it can be appended s2 = s.substring(i + 1 , i + 1 ); // addition of character takes one step dp[i] = Math.min(dp[i], dp[i - 1 ] + 1 ); // appending takes 1 step, and we directly // reach index i*2+1 after appending // so the number of steps is stored in i*2+1 if (s1 == s2) dp[i * 2 + 1 ] = Math.min(dp[i] + 1 , dp[i * 2 + 1 ]); } return dp[n - 1 ]; } // Driver Code public static void main(String args[]) { String s = "aaaaaaaa" ; int n = s.length(); // function call to return minimal number of moves System.out.println(minimalSteps(s, n)/ 2 ); } } // This code is contributed by // Shashank_Sharma |
Python3
# Python program to print the # Minimal moves to form a string # by appending string and adding characters INT_MAX = 100000000 # function to return the # minimal number of moves def minimalSteps(s, n): dp = [INT_MAX for i in range (n)] # initialize both strings to null s1 = "" s2 = "" # base case dp[ 0 ] = 1 s1 + = s[ 0 ] for i in range ( 1 , n): s1 + = s[i] # check if it can be appended s2 = s[i + 1 : i + 1 + i + 1 ] # addition of character # takes one step dp[i] = min (dp[i], dp[i - 1 ] + 1 ) # appending takes 1 step, and # we directly reach index i*2+1 # after appending so the number # of steps is stored in i*2+1 if (s1 = = s2): dp[i * 2 + 1 ] = min (dp[i] + 1 , dp[i * 2 + 1 ]) return dp[n - 1 ] # Driver Code s = "aaaaaaaa" n = len (s) # function call to return # minimal number of moves print ( minimalSteps(s, n) ) # This code is contributed # by sahilshelangia |
C#
// C# program to print the // Minimal moves to form a string // by appending string and adding characters using System; class GFG { // function to return the minimal number of moves static int minimalSteps(String s, int n) { int []dp = new int [n]; // initializing dp[i] to INT_MAX for ( int i = 0; i < n; i++) dp[i] = int .MaxValue; // initialize both strings to null String s1 = "" , s2 = "" ; // base case dp[0] = 1; s1 += s[0]; for ( int i = 1; i < n; i++) { s1 += s[i]; // check if it can be appended s2 = s.Substring(i , 1); // addition of character takes one step dp[i] = Math.Min(dp[i], dp[i - 1] + 1); // appending takes 1 step, and we directly // reach index i*2+1 after appending // so the number of steps is stored in i*2+1 if (s1 == s2) dp[i * 2 + 1] = Math.Min(dp[i] + 1, dp[i * 2 + 1]); } return dp[n - 1]; } // Driver Code public static void Main(String []args) { String s = "aaaaaaaa" ; int n = s.Length; // function call to return minimal number of moves Console.Write(minimalSteps(s, n)/2); } } // This code has been contributed by 29AjayKumar |
PHP
<?php // php program to print the // Minimal moves to form a // string by appending string // and adding characters // function to return the // minimal number of moves function minimalSteps( $s , $n ) { // initializing dp[i] to INT_MAX for ( $i = 0; $i < $n ; $i ++) $dp [ $i ] = PHP_INT_MAX; // initialize both // strings to null $s1 = "" ; $s2 = "" ; // base case $dp [0] = 1; $s1 = $s1 . $s [0]; for ( $i = 1; $i < $n ; $i ++) { $s1 = $s1 . $s [ $i ]; // check if it can // be appended $s2 = substr ( $s , $i + 1, $i + 1); // addition of character // takes one step $dp [ $i ] = min( $dp [ $i ], $dp [ $i - 1] + 1); // appending takes 1 step, // and we directly // reach index i*2+1 // after appending // so the number of steps // is stored in i*2+1 if ( $s1 == $s2 ) $dp [ $i * 2 + 1] = min( $dp [ $i ] + 1, $dp [ $i * 2 + 1]); } return $dp [ $n - 1]; } // Driver Code $s = "aaaaaaaa" ; $n = strlen ( $s ); // function call to return //minimal number of moves echo minimalSteps( $s , $n ); // This code is contributed by mits ?> |
Javascript
// Javascript program to print the // Minimal moves to form a string // by appending string and adding characters // function to return the minimal number of moves function minimalSteps(s, n) { let dp = [n] // initializing dp[i] to INT_MAX for (let i = 0; i < n; i++) dp[i] = Number.MAX_SAFE_INTEGER // initialize both strings to null let s1 = "" let s2 = "" // base case dp[0] = 1 s1 += s[0] for (let i = 1; i < n; i++) { s1 += s[i] // check if it can be appended s2 = s.substr(i + 1, i + 1); // addition of character takes one step dp[i] = Math.min(dp[i], dp[i - 1] + 1); // appending takes 1 step, and we directly // reach index i*2+1 after appending // so the number of steps is stored in i*2+1 if (s1 == s2) dp[i * 2 + 1] = Math.min(dp[i] + 1, dp[i * 2 + 1]) } return dp[n - 1] } // Driver Code let s = "aaaaaaaa" let n = s.length // function call to return minimal number of moves console.log(minimalSteps(s, n)) // This code is contributed by Samim Hossain Mondal. |
4
Time Complexity: O(n2), where n is the length of the input string.
Auxiliary Space: O(n)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!