Saturday, November 16, 2024
Google search engine
HomeLanguagesDynamic ProgrammingMaximum possible balanced binary substring splits with at most cost K

Maximum possible balanced binary substring splits with at most cost K

Given a binary array arr[] and a value array val[]. The task is to find the maximum possible splits of the binary array that can be done such that each segment contains an equal number of 0s and 1s using at most k coins. Each split costs (val[i] – val[j])2, where i and j are the adjacent indices of the split segment.

Examples:

Input: arr[] = {0, 1, 0, 0, 1, 1}, val[] = {2, 5, 1, 3, 6, 10}, k = 20
Output: 1
Explanation: Splits can be done in the following way: 0 1 | 0 0 1 1 and cost = (5 –  1)2 = 16 ≤ 20.

Input: arr[] = {1, 0, 0, 1, 0, 1, 1, 0}, val[] = {9, 7, 5, 2, 4, 12, 3, 1], k = 10
Output: 2
Explanation: Splits can be done in the following way: 1 0 | 0 1 | 0 1 1 0

 

Approach: The task can be solved using dynamic programming (Top-down approach). 
Follow the below steps:

  1. Initialize a 2d matrix say dp of dimensions K * N.
  2. For every index, there are two choices, whether to make a cut at that index or to not make a cut at that index, provided that the number of zeroes and ones are equal.
  3. Memoize the values, to be used again
  4. Maximize the value of count_splits, to get the resultant maximum cuts.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
int dp[1001][1001];
 
// Function to find maximum possible splits
// in atmost k coins such that each
// segment contains equal number of 0 and 1
int maximumSplits(int arr[], int val[],
                  int k, int N)
{
    // Base Case
    if (k < 0) {
        return INT_MIN;
    }
 
    // If already have a stored value
    // return it
    if (dp[k][N] != -1) {
        return dp[k][N];
    }
 
    // Count for zeros and ones
    int zero = 0, one = 0;
 
    // Count for number of splits
    int count_split = 0;
    int i;
 
    // Iterate over the array and
    // search for zeros and ones
    for (i = N - 1; i > 0; i--) {
        arr[i] == 0 ? zero++ : one++;
 
        // If count of zeros is equal to
        // count of ones
        if (zero == one) {
            // Store the maximum possible one
            count_split = max(
                count_split,
                1
                    + maximumSplits(
                          arr, val,
                          k - pow(val[i]
                                      - val[i - 1],
                                  2),
                          i));
        }
    }
 
    // If index is at 0, find if
    // it is zero or one and
    // increment the count
    if (i == 0) {
        arr[0] == 0 ? zero++ : one++;
 
        // If count of zero is not equal to
        // count of one, re-initialize
        // count_split with 0
        if (zero != one) {
            count_split = 0;
        }
    }
 
    // Store the returned value in dp[]
    return dp[k][N] = count_split;
}
 
// Driver Code
int main()
{
    int arr[] = { 1, 0, 0, 1, 0, 1, 1, 0 };
    int val[] = { 9, 7, 5, 2, 4, 12, 3, 1 };
    int k = 10;
 
    int N = sizeof(arr) / sizeof(arr[0]);
    memset(dp, -1, sizeof(dp));
 
    cout << maximumSplits(arr, val, k, N);
 
    return 0;
}


Java




// Java program for the above approach
public class GFG
{
 
static int[][] dp = new int[1001][1001];
 
// Function to find maximum possible splits
// in atmost k coins such that each
// segment contains equal number of 0 and 1
static int maximumSplits(int[] arr, int[] val,
                  int k, int N)
{
   
    // Base Case
    if (k < 0) {
        return Integer.MIN_VALUE;
    }
 
    // If already have a stored value
    // return it
    if (dp[k][N] != -1) {
        return dp[k][N];
    }
 
    // Count for zeros and ones
    int zero = 0, one = 0;
 
    // Count for number of splits
    int count_split = 0;
    int i;
 
    // Iterate over the array and
    // search for zeros and ones
    for (i = N - 1; i > 0; i--) {
        if(arr[i] == 0)
            zero++;
        else
            one++;
 
        // If count of zeros is equal to
        // count of ones
        if (zero == one) {
            // Store the maximum possible one
            count_split = Math.max(
                count_split,
                1
                    + maximumSplits(
                          arr, val,
                          k - (int)Math.pow(val[i]
                                      - val[i - 1],
                                  2),
                          i));
        }
    }
 
    // If index is at 0, find if
    // it is zero or one and
    // increment the count
    if (i == 0) {
        if(arr[0] == 0)
            zero++;
        else
            one++;
 
        // If count of zero is not equal to
        // count of one, re-initialize
        // count_split with 0
        if (zero != one) {
            count_split = 0;
        }
    }
 
    // Store the returned value in dp[]
    return dp[k][N] = count_split;
}
  
 
// Driver code
public static void main(String[] args)
{
    int[] arr = { 1, 0, 0, 1, 0, 1, 1, 0 };
    int[] val = { 9, 7, 5, 2, 4, 12, 3, 1 };
    int k = 10;
 
    int N = arr.length;
    int i, j;
    for(i=0;i<1001;i++)
    {
        for(j=0;j<1001;j++)
        {
            dp[i][j] = -1;
        }
    }
 
    System.out.println(maximumSplits(arr, val, k, N));
}
}
 
// This code is contributed by AnkThon


Python3




# Python Program to implement
# the above approach
dp = [0] * 1001
for i in range(len(dp)):
    dp[i] = [-1] * 1001
 
# Function to find maximum possible splits
# in atmost k coins such that each
# segment contains equal number of 0 and 1
def maximumSplits(arr, val, k, N):
 
    # Base Case
    if (k < 0):
        return 10 ** (-9)
     
    # If already have a stored value
    # return it
    if (dp[k][N] != -1) :
        return dp[k][N]
     
    # Count for zeros and ones
    zero = 0
    one = 0
 
    # Count for number of splits
    count_split = 0
 
    # Iterate over the array and
    # search for zeros and ones
    for i in range(N - 1, 0, -1):
        if (arr[i] == 0):
            zero += 1
        else: one += 1
 
        # If count of zeros is equal to
        # count of ones
        if (zero == one):
 
            # Store the maximum possible one
            count_split = max(
                count_split, 1
                + maximumSplits(
                    arr, val,
                    k - pow(val[i]
                                 - val[i - 1],
                                 2), i))
         
    # If index is at 0, find if
    # it is zero or one and
    # increment the count
    if (i == 0):
        if (arr[i] == 0):
            zero += 1
        else: one -= 1
 
        # If count of zero is not equal to
        # count of one, re-initialize
        # count_split with 0
        if (zero != one):
            count_split = 0
         
    # Store the returned value in dp[]
    dp[k][N] = count_split
    return dp[k][N]
 
# Driver Code
arr = [1, 0, 0, 1, 0, 1, 1, 0]
val = [9, 7, 5, 2, 4, 12, 3, 1]
k = 10
 
N = len(arr)
 
print(maximumSplits(arr, val, k, N))
 
# This code is contributed by Saurabh Jaiswal


C#




// C# program for the above approach
using System;
public class GFG
{
 
static int[,] dp = new int[1001, 1001];
 
// Function to find maximum possible splits
// in atmost k coins such that each
// segment contains equal number of 0 and 1
static int maximumSplits(int[] arr, int[] val,
                  int k, int N)
{
    // Base Case
    if (k < 0) {
        return Int32.MinValue;
    }
 
    // If already have a stored value
    // return it
    if (dp[k, N] != -1) {
        return dp[k, N];
    }
 
    // Count for zeros and ones
    int zero = 0, one = 0;
 
    // Count for number of splits
    int count_split = 0;
    int i;
 
    // Iterate over the array and
    // search for zeros and ones
    for (i = N - 1; i > 0; i--) {
        if(arr[i] == 0)
            zero++;
        else
            one++;
 
        // If count of zeros is equal to
        // count of ones
        if (zero == one) {
            // Store the maximum possible one
            count_split = Math.Max(
                count_split,
                1
                    + maximumSplits(
                          arr, val,
                          k - (int)Math.Pow(val[i]
                                      - val[i - 1],
                                  2),
                          i));
        }
    }
 
    // If index is at 0, find if
    // it is zero or one and
    // increment the count
    if (i == 0) {
        if(arr[0] == 0)
            zero++;
        else
            one++;
 
        // If count of zero is not equal to
        // count of one, re-initialize
        // count_split with 0
        if (zero != one) {
            count_split = 0;
        }
    }
 
    // Store the returned value in dp[]
    return dp[k, N] = count_split;
}
  
 
// Driver code
public static void Main(String[] args)
{
    int[] arr = { 1, 0, 0, 1, 0, 1, 1, 0 };
    int[] val = { 9, 7, 5, 2, 4, 12, 3, 1 };
    int k = 10;
 
    int N = arr.Length;
    int i, j;
    for(i=0;i<1001;i++)
    {
        for(j=0;j<1001;j++)
        {
            dp[i, j] = -1;
        }
    }
 
    Console.WriteLine(maximumSplits(arr, val, k, N));
}
}
 
// This code is contributed by sanjoy_62.


Javascript




<script>
 
      // JavaScript Program to implement
      // the above approach
      let dp = new Array(1001);
      for (let i = 0; i < dp.length; i++) {
          dp[i] = new Array(1001).fill(-1);
      }
       
      // Function to find maximum possible splits
      // in atmost k coins such that each
      // segment contains equal number of 0 and 1
      function maximumSplits(arr, val,
          k, N)
      {
       
          // Base Case
          if (k < 0) {
              return Number.MIN_VALUE;
          }
 
          // If already have a stored value
          // return it
          if (dp[k][N] != -1) {
              return dp[k][N];
          }
 
          // Count for zeros and ones
          let zero = 0, one = 0;
 
          // Count for number of splits
          let count_split = 0;
          let i;
 
          // Iterate over the array and
          // search for zeros and ones
          for (i = N - 1; i > 0; i--) {
              arr[i] == 0 ? zero++ : one++;
 
              // If count of zeros is equal to
              // count of ones
              if (zero == one)
              {
               
                  // Store the maximum possible one
                  count_split = Math.max(
                      count_split, 1
                      + maximumSplits(
                          arr, val,
                          k - Math.pow(val[i]
                              - val[i - 1],
                              2), i));
              }
          }
 
          // If index is at 0, find if
          // it is zero or one and
          // increment the count
          if (i == 0) {
              arr[0] == 0 ? zero++ : one++;
 
              // If count of zero is not equal to
              // count of one, re-initialize
              // count_split with 0
              if (zero != one) {
                  count_split = 0;
              }
          }
 
          // Store the returned value in dp[]
          return dp[k][N] = count_split;
      }
 
      // Driver Code
      let arr = [1, 0, 0, 1, 0, 1, 1, 0];
      let val = [9, 7, 5, 2, 4, 12, 3, 1];
      let k = 10;
 
      let N = arr.length;
 
      document.write(maximumSplits(arr, val, k, N))
 
  // This code is contributed by Potta Lokesh
  </script>


Output

2

Time Complexity: O(N*K)
Auxiliary Space: O(N*K)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments