Saturday, November 16, 2024
Google search engine
HomeLanguagesDynamic ProgrammingMaximize sum of an Array by flipping sign of all elements of...

Maximize sum of an Array by flipping sign of all elements of a single subarray

Given an array arr[] of N integers, the task is to find the maximum sum of the array that can be obtained by flipping signs of any subarray of the given array at most once.

Examples:

Input: arr[] = {-2, 3, -1, -4, -2} 
Output: 8
Explanation: 
Flipping the signs of subarray {-1, -4, -2} modifies the array to {-2, 3, 1, 4, 2}. Therefore, the sum of the array = -2 + 3 + 1 + 4 + 2 = 8, which is the maximum possible.

Input: arr[] = {1, 2, -10, 2, -20}
Output: 31 
Explanation: 
Flipping the signs of subarray {-10, 2, -20} modifies the array to {1, 2, 10, -2, 20}. Therefore, the sum of the array = 1 + 2 + 10 – 2 + 20 = 31, which is the maximum possible.

Naive Approach: The simplest approach is to calculate the total sum of the array and then generate all possible subarrays. Now, for each subarray {A[i], … A[j]}, subtract its sum, sum(A[i], …, A[j]), from the total sum and flip the signs of the subarray elements. After flipping the subarray, add the sum of the flipped subarray, i.e. (-1 * sum(A[i], …, A[j])), to the total sum. Below are the steps:

  1. Find the total sum of the original array (say total_sum) and store it.
  2. Now, for all possible subarrays find the maximum of total_sum – 2 * sum(i, j).

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the maximum sum
// after flipping a subarray
int maxSumFlip(int a[], int n)
{
 
    // Stores the total sum of array
    int total_sum = 0;
    for (int i = 0; i < n; i++)
        total_sum += a[i];
 
    // Initialize the maximum sum
    int max_sum = INT_MIN;
 
    // Iterate over all possible subarrays
    for (int i = 0; i < n; i++)
    {
        // Initialize sum of the subarray
        // before flipping sign
        int sum = 0;
 
        for (int j = i; j < n; j++)
        {
            // Calculate the sum of
            // original subarray
            sum += a[j];
 
            // Subtract the original
            // subarray sum and add
            // the flipped subarray
            // sum to the total sum
            max_sum = max(max_sum, total_sum - 2 * sum);
        }
    }
 
    // Return the max_sum
    return max(max_sum, total_sum);
}
 
// Driver Code
int main()
{
    int arr[] = { -2, 3, -1, -4, -2 };
    int N = sizeof(arr) / sizeof(int);
 
    cout << maxSumFlip(arr, N);
}
 
// This code is contributed by sanjoy_62


Java




// Java program for the above approach
 
import java.io.*;
 
public class GFG
{
    // Function to find the maximum sum
    // after flipping a subarray
    public static int maxSumFlip(int a[], int n)
    {
        // Stores the total sum of array
        int total_sum = 0;
        for (int i = 0; i < n; i++)
            total_sum += a[i];
 
        // Initialize the maximum sum
        int max_sum = Integer.MIN_VALUE;
 
        // Iterate over all possible subarrays
        for (int i = 0; i < n; i++)
        {
            // Initialize sum of the subarray
            // before flipping sign
            int sum = 0;
 
            for (int j = i; j < n; j++)
            {
                // Calculate the sum of
                // original subarray
                sum += a[j];
 
                // Subtract the original
                // subarray sum and add
                // the flipped subarray
                // sum to the total sum
                max_sum = Math.max(max_sum,
                                   total_sum - 2 * sum);
            }
        }
 
        // Return the max_sum
        return Math.max(max_sum, total_sum);
    }
 
    // Driver Code
    public static void main(String args[])
    {
        int arr[] = { -2, 3, -1, -4, -2 };
        int N = arr.length;
       
        // Function call
        System.out.println(maxSumFlip(arr, N));
    }
}


Python3




# Python3 program for the above approach
import sys
 
# Function to find the maximum sum
# after flipping a subarray
 
 
def maxSumFlip(a, n):
 
    # Stores the total sum of array
    total_sum = 0
    for i in range(n):
        total_sum += a[i]
 
    # Initialize the maximum sum
    max_sum = -sys.maxsize - 1
 
    # Iterate over all possible subarrays
    for i in range(n):
 
        # Initialize sum of the subarray
        # before flipping sign
        sum = 0
 
        for j in range(i, n):
 
            # Calculate the sum of
            # original subarray
            sum += a[j]
 
            # Subtract the original
            # subarray sum and add
            # the flipped subarray
            # sum to the total sum
            max_sum = max(max_sum,
                          total_sum - 2 * sum)
 
    # Return the max_sum
    return max(max_sum, total_sum)
 
 
# Driver Code
arr = [-2, 3, -1, -4, -2]
N = len(arr)
 
print(maxSumFlip(arr, N))
 
# This code is contributed by sanjoy_62


C#




// C# program for the above approach
using System;
class GFG {
 
    // Function to find the maximum sum
    // after flipping a subarray
    public static int maxSumFlip(int[] a, int n)
    {
 
        // Stores the total sum of array
        int total_sum = 0;
        for (int i = 0; i < n; i++)
            total_sum += a[i];
 
        // Initialize the maximum sum
        int max_sum = int.MinValue;
 
        // Iterate over all possible subarrays
        for (int i = 0; i < n; i++)
        {
            // Initialize sum of the subarray
            // before flipping sign
            int sum = 0;
 
            for (int j = i; j < n; j++)
            {
                // Calculate the sum of
                // original subarray
                sum += a[j];
 
                // Subtract the original
                // subarray sum and add
                // the flipped subarray
                // sum to the total sum
                max_sum = Math.Max(max_sum,
                                   total_sum - 2 * sum);
            }
        }
 
        // Return the max_sum
        return Math.Max(max_sum, total_sum);
    }
 
    // Driver Code
    public static void Main(String[] args)
    {
        int[] arr = { -2, 3, -1, -4, -2 };
        int N = arr.Length;
 
        // Function call
        Console.WriteLine(maxSumFlip(arr, N));
    }
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
 
// Javascript program to implement
// the above approach
 
    // Function to find the maximum sum
    // after flipping a subarray
    function maxSumFlip(a, n)
    {
        // Find the total sum of array
        let total_sum = 0;
        for (let i = 0; i < n; i++)
            total_sum += a[i];
  
        // Using Kadane's Algorithm
        let max_ending_here = -a[0] - a[0];
        let curr_sum = -a[0] - a[0];
  
        for (let i = 1; i < n; i++)
        {
            // Either extend previous
            // sub_array or start
            // new subarray
            curr_sum = Math.max(curr_sum + (-a[i] - a[i]),
                                (-a[i] - a[i]));
  
            // Keep track of max_sum array
            max_ending_here
                = Math.max(max_ending_here, curr_sum);
        }
  
        // Add the sum to the total_sum
        let max_sum = total_sum + max_ending_here;
  
        // Check max_sum was maximum
        // with flip or without flip
        max_sum = Math.max(max_sum, total_sum);
  
        // Return max_sum
        return max_sum;
    }
  
 
// Driver Code
 
        let arr = [ -2, 3, -1, -4, -2 ];
        let N = arr.length;
  
        // Function Call
        document.write(maxSumFlip(arr, N));
                 
</script>


Output

8

Time Complexity: O(N2
Auxiliary Space: O(1)

Efficient Approach: From the above approach, it can be observed that, to obtain maximum array sum, (2 * subarray sum) needs to be maximized for all subarrays. This can be done by using Dynamic Programming. Below are the steps:

  1. Find the minimum sum subarray from l[] using Kadane’s Algorithm
  2. This maximizes the contribution of (2 * sum) over all subarrays.
  3. Add the maximum contribution to the total sum of the array.

Below is the implementation of the above approach:

C++




#include <bits/stdc++.h>
using namespace std;
 
// Function to find the maximum sum
// after flipping a subarray
int maxSumFlip(int a[], int n)
{
 
    // Stores the total sum of array
    int total_sum = 0;
    for (int i = 0; i < n; i++)
        total_sum += a[i];
 
      // Kadane's algorithm to find the minimum subarray sum
    int b=0,temp=2e9;
    for (int i = 0; i < n; i++)
    {
          b+=a[i];
          if(temp>b)
          temp=b;
          if(b>0)
          b=0;
    }
 
    // Return the max_sum
    return max(total_sum,total_sum-2*temp);
}
 
// Driver Code
int main()
{
    int arr[] = { -2, 3, -1, -4, -2 };
    int N = sizeof(arr) / sizeof(int);
 
    cout << maxSumFlip(arr, N);
}


Java




import java.util.*;
import java.io.*;
 
// Java program for the above approach
class GFG{
 
  // Function to find the maximum sum
  // after flipping a subarray
  static int maxSumFlip(int ar[], int n)
  {
 
    // Stores the total sum of array
    int total_sum = 0;
    for (int i = 0 ; i < n ; i++){
      total_sum += ar[i];
    }
 
    // Kadane's algorithm to find the minimum subarray sum
    int b = 0;
    int a = 2000000000;
    for (int i = 0 ; i < n ; i++)
    {
      b += ar[i];
      if(a > b){
        a = b;
      }
      if(b > 0){
        b = 0;
      }
    }
 
    // Return the max_sum
    return Math.max(total_sum, total_sum - 2*a);
  }
 
  // Driver Code
  public static void main(String args[])
  {
    int arr[] = new int[]{ -2, 3, -1, -4, -2 };
    int N = arr.length;
 
    System.out.println(maxSumFlip(arr, N));
  }
}
 
// This code is contributed by entertain2022.


Python3




def maxsum(l,n):
  total_sum=sum(l)
  #kadane's algorithm to find the minimum subarray sum
  current_sum=0
  minimum_sum=0
  for i in l:
    current_sum+=i
    minimum_sum=min(minimum_sum,current_sum)
    current_sum=min(current_sum,0)
  return max(total_sum,total_sum-2*minimum_sum)
l=[-2,3,-1,-4,-2]
n=len(l)
print(maxsum(l,n))


C#




// Include namespace system
using System;
 
// C# program for the above approach
public class GFG
{
  // Function to find the maximum sum
  // after flipping a subarray
  public static int maxSumFlip(int[] ar, int n)
  {
     
    // Stores the total sum of array
    var total_sum = 0;
    for (int i = 0; i < n; i++)
    {
      total_sum += ar[i];
    }
     
    // Kadane's algorithm to find the minimum subarray sum
    var b = 0;
    var a = 2000000000;
    for (int i = 0; i < n; i++)
    {
      b += ar[i];
      if (a > b)
      {
        a = b;
      }
      if (b > 0)
      {
        b = 0;
      }
    }
     
    // Return the max_sum
    return Math.Max(total_sum,total_sum - 2 * a);
  }
   
  // Driver Code
  public static void Main(String[] args)
  {
    int[] arr = new int[]{-2, 3, -1, -4, -2};
    var N = arr.Length;
    Console.WriteLine(GFG.maxSumFlip(arr, N));
  }
}
 
// This code is contributed by sourabhdalal0001.


Javascript




<script>
 
function maxsum(l,n){
let total_sum = 0;
for (let i = 0; i < n; i++)
   total_sum += l[i];
    
// kadane's algorithm to find the minimum subarray sum
let current_sum=0
let minimum_sum=0
for(let i of l){
    current_sum += i
    minimum_sum = Math.min(minimum_sum,current_sum)
    current_sum = Math.min(current_sum,0)
}
return Math.max(total_sum, total_sum-2*minimum_sum)
}
 
// driver code
let l = [-2, 3, -1, -4, -2]
let n = l.length
document.write(maxsum(l,n))
 
// This code is contributed by shinjanpatra
 
</script>


Output

8

Time Complexity: O(N) 
Auxiliary Space: O(1)
Note: Can also be done by finding minimum subarray sum and print max(TotalSum, TotalSum-2*(minsubarraysum))

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments