The longest Zig-Zag subsequence problem is to find length of the longest subsequence of given sequence such that all elements of this are alternating.
If a sequence {x1, x2, .. xn} is alternating sequence then its element satisfy one of the following relation :
x1 < x2 > x3 < x4 > x5 < …. xn or x1 > x2 < x3 > x4 < x5 > …. xn
Examples :
Input: arr[] = {1, 5, 4} Output: 3 The whole arrays is of the form x1 < x2 > x3 Input: arr[] = {1, 4, 5} Output: 2 All subsequences of length 2 are either of the form x1 < x2; or x1 > x2 Input: arr[] = {10, 22, 9, 33, 49, 50, 31, 60} Output: 6 The subsequences {10, 22, 9, 33, 31, 60} or {10, 22, 9, 49, 31, 60} or {10, 22, 9, 50, 31, 60} are longest Zig-Zag of length 6.
This problem is an extension of longest increasing subsequence problem, but requires more thinking for finding optimal substructure property in this.
We will solve this problem by dynamic Programming method, Let A is given array of length n of integers. We define a 2D array Z[n][2] such that Z[i][0] contains longest Zig-Zag subsequence ending at index i and last element is greater than its previous element and Z[i][1] contains longest Zig-Zag subsequence ending at index i and last element is smaller than its previous element, then we have following recurrence relation between them,
Z[i][0] = Length of the longest Zig-Zag subsequence ending at index i and last element is greater than its previous element Z[i][1] = Length of the longest Zig-Zag subsequence ending at index i and last element is smaller than its previous element Recursive Formulation: Z[i][0] = max (Z[i][0], Z[j][1] + 1); for all j < i and A[j] < A[i] Z[i][1] = max (Z[i][1], Z[j][0] + 1); for all j < i and A[j] > A[i]
The first recurrence relation is based on the fact that, If we are at position i and this element has to bigger than its previous element then for this sequence (upto i) to be bigger we will try to choose an element j ( < i) such that A[j] < A[i] i.e. A[j] can become A[i]’s previous element and Z[j][1] + 1 is bigger than Z[i][0] then we will update Z[i][0].
Remember we have chosen Z[j][1] + 1 not Z[j][0] + 1 to satisfy alternate property because in Z[j][0] last element is bigger than its previous one and A[i] is greater than A[j] which will break the alternating property if we update. So above fact derives first recurrence relation, similar argument can be made for second recurrence relation also.
C++
// C++ program to find longest Zig-Zag subsequence in // an array #include <bits/stdc++.h> using namespace std; // function to return max of two numbers int max( int a, int b) { return (a > b) ? a : b; } // Function to return longest Zig-Zag subsequence length int zzis( int arr[], int n) { /*Z[i][0] = Length of the longest Zig-Zag subsequence ending at index i and last element is greater than its previous element Z[i][1] = Length of the longest Zig-Zag subsequence ending at index i and last element is smaller than its previous element */ int Z[n][2]; /* Initialize all values from 1 */ for ( int i = 0; i < n; i++) Z[i][0] = Z[i][1] = 1; int res = 1; // Initialize result /* Compute values in bottom up manner */ for ( int i = 1; i < n; i++) { // Consider all elements as previous of arr[i] for ( int j = 0; j < i; j++) { // If arr[i] is greater, then check with Z[j][1] if (arr[j] < arr[i] && Z[i][0] < Z[j][1] + 1) Z[i][0] = Z[j][1] + 1; // If arr[i] is smaller, then check with Z[j][0] if ( arr[j] > arr[i] && Z[i][1] < Z[j][0] + 1) Z[i][1] = Z[j][0] + 1; } /* Pick maximum of both values at index i */ if (res < max(Z[i][0], Z[i][1])) res = max(Z[i][0], Z[i][1]); } return res; } /* Driver program */ int main() { int arr[] = { 10, 22, 9, 33, 49, 50, 31, 60 }; int n = sizeof (arr)/ sizeof (arr[0]); cout<< "Length of Longest Zig-Zag subsequence is " <<zzis(arr, n)<<endl; return 0; } // This code is contributed by noob2000. |
C
// C program to find longest Zig-Zag subsequence in // an array #include <stdio.h> #include <stdlib.h> // function to return max of two numbers int max( int a, int b) { return (a > b) ? a : b; } // Function to return longest Zig-Zag subsequence length int zzis( int arr[], int n) { /*Z[i][0] = Length of the longest Zig-Zag subsequence ending at index i and last element is greater than its previous element Z[i][1] = Length of the longest Zig-Zag subsequence ending at index i and last element is smaller than its previous element */ int Z[n][2]; /* Initialize all values from 1 */ for ( int i = 0; i < n; i++) Z[i][0] = Z[i][1] = 1; int res = 1; // Initialize result /* Compute values in bottom up manner */ for ( int i = 1; i < n; i++) { // Consider all elements as previous of arr[i] for ( int j = 0; j < i; j++) { // If arr[i] is greater, then check with Z[j][1] if (arr[j] < arr[i] && Z[i][0] < Z[j][1] + 1) Z[i][0] = Z[j][1] + 1; // If arr[i] is smaller, then check with Z[j][0] if ( arr[j] > arr[i] && Z[i][1] < Z[j][0] + 1) Z[i][1] = Z[j][0] + 1; } /* Pick maximum of both values at index i */ if (res < max(Z[i][0], Z[i][1])) res = max(Z[i][0], Z[i][1]); } return res; } /* Driver program */ int main() { int arr[] = { 10, 22, 9, 33, 49, 50, 31, 60 }; int n = sizeof (arr)/ sizeof (arr[0]); printf ( "Length of Longest Zig-Zag subsequence is %d\n" , zzis(arr, n) ); return 0; } |
Java
// Java program to find longest // Zig-Zag subsequence in an array import java.io.*; class GFG { // Function to return longest // Zig-Zag subsequence length static int zzis( int arr[], int n) { /*Z[i][0] = Length of the longest Zig-Zag subsequence ending at index i and last element is greater than its previous element Z[i][1] = Length of the longest Zig-Zag subsequence ending at index i and last element is smaller than its previous element */ int Z[][] = new int [n][ 2 ]; /* Initialize all values from 1 */ for ( int i = 0 ; i < n; i++) Z[i][ 0 ] = Z[i][ 1 ] = 1 ; int res = 1 ; // Initialize result /* Compute values in bottom up manner */ for ( int i = 1 ; i < n; i++) { // Consider all elements as // previous of arr[i] for ( int j = 0 ; j < i; j++) { // If arr[i] is greater, then // check with Z[j][1] if (arr[j] < arr[i] && Z[i][ 0 ] < Z[j][ 1 ] + 1 ) Z[i][ 0 ] = Z[j][ 1 ] + 1 ; // If arr[i] is smaller, then // check with Z[j][0] if ( arr[j] > arr[i] && Z[i][ 1 ] < Z[j][ 0 ] + 1 ) Z[i][ 1 ] = Z[j][ 0 ] + 1 ; } /* Pick maximum of both values at index i */ if (res < Math.max(Z[i][ 0 ], Z[i][ 1 ])) res = Math.max(Z[i][ 0 ], Z[i][ 1 ]); } return res; } /* Driver program */ public static void main(String[] args) { int arr[] = { 10 , 22 , 9 , 33 , 49 , 50 , 31 , 60 }; int n = arr.length; System.out.println( "Length of Longest " + "Zig-Zag subsequence is " + zzis(arr, n)); } } // This code is contributed by Prerna Saini |
Python3
# Python3 program to find longest # Zig-Zag subsequence in an array # Function to return max of two numbers # Function to return longest # Zig-Zag subsequence length def zzis(arr, n): '''Z[i][0] = Length of the longest Zig-Zag subsequence ending at index i and last element is greater than its previous element Z[i][1] = Length of the longest Zig-Zag subsequence ending at index i and last element is smaller than its previous element ''' Z = [[ 1 for i in range ( 2 )] for i in range (n)] res = 1 # Initialize result # Compute values in bottom up manner ''' for i in range ( 1 , n): # Consider all elements as previous of arr[i] for j in range (i): # If arr[i] is greater, then check with Z[j][1] if (arr[j] < arr[i] and Z[i][ 0 ] < Z[j][ 1 ] + 1 ): Z[i][ 0 ] = Z[j][ 1 ] + 1 # If arr[i] is smaller, then check with Z[j][0] if ( arr[j] > arr[i] and Z[i][ 1 ] < Z[j][ 0 ] + 1 ): Z[i][ 1 ] = Z[j][ 0 ] + 1 # Pick maximum of both values at index i ''' if (res < max (Z[i][ 0 ], Z[i][ 1 ])): res = max (Z[i][ 0 ], Z[i][ 1 ]) return res # Driver Code arr = [ 10 , 22 , 9 , 33 , 49 , 50 , 31 , 60 ] n = len (arr) print ( "Length of Longest Zig-Zag subsequence is" , zzis(arr, n)) # This code is contributed by Mohit Kumar |
C#
// C# program to find longest // Zig-Zag subsequence in an array using System; class GFG { // Function to return longest // Zig-Zag subsequence length static int zzis( int []arr, int n) { /*Z[i][0] = Length of the longest Zig-Zag subsequence ending at index i and last element is greater than its previous element Z[i][1] = Length of the longest Zig-Zag subsequence ending at index i and last element is smaller than its previous element */ int [,]Z = new int [n, 2]; /* Initialize all values from 1 */ for ( int i = 0; i < n; i++) Z[i, 0] = Z[i, 1] = 1; // Initialize result int res = 1; /* Compute values in bottom up manner */ for ( int i = 1; i < n; i++) { // Consider all elements as // previous of arr[i] for ( int j = 0; j < i; j++) { // If arr[i] is greater, then // check with Z[j][1] if (arr[j] < arr[i] && Z[i, 0] < Z[j, 1] + 1) Z[i, 0] = Z[j, 1] + 1; // If arr[i] is smaller, then // check with Z[j][0] if ( arr[j] > arr[i] && Z[i, 1] < Z[j, 0] + 1) Z[i, 1] = Z[j, 0] + 1; } /* Pick maximum of both values at index i */ if (res < Math.Max(Z[i, 0], Z[i, 1])) res = Math.Max(Z[i, 0], Z[i, 1]); } return res; } // Driver Code static public void Main () { int []arr = {10, 22, 9, 33, 49, 50, 31, 60}; int n = arr.Length; Console.WriteLine( "Length of Longest " + "Zig-Zag subsequence is " + zzis(arr, n)); } } // This code is contributed by ajit |
PHP
<?php //PHP program to find longest Zig-Zag //subsequence in an array // function to return max of two numbers function maxD( $a , $b ) { return ( $a > $b ) ? $a : $b ; } // Function to return longest Zig-Zag subsequence length function zzis( $arr , $n ) { /*Z[i][0] = Length of the longest Zig-Zag subsequence ending at index i and last element is greater than its previous element Z[i][1] = Length of the longest Zig-Zag subsequence ending at index i and last element is smaller than its previous element */ //$Z[$n][2]; /* Initialize all values from 1 */ for ( $i = 0; $i < $n ; $i ++) $Z [ $i ][0] = $Z [ $i ][1] = 1; $res = 1; // Initialize result /* Compute values in bottom up manner */ for ( $i = 1; $i < $n ; $i ++) { // Consider all elements as previous of arr[i] for ( $j = 0; $j < $i ; $j ++) { // If arr[i] is greater, then check with Z[j][1] if ( $arr [ $j ] < $arr [ $i ] && $Z [ $i ][0] < $Z [ $j ][1] + 1) $Z [ $i ][0] = $Z [ $j ][1] + 1; // If arr[i] is smaller, then check with Z[j][0] if ( $arr [ $j ] > $arr [ $i ] && $Z [ $i ][1] < $Z [ $j ][0] + 1) $Z [ $i ][1] = $Z [ $j ][0] + 1; } /* Pick maximum of both values at index i */ if ( $res < max( $Z [ $i ][0], $Z [ $i ][1])) $res = max( $Z [ $i ][0], $Z [ $i ][1]); } return $res ; } /* Driver program */ $arr = array ( 10, 22, 9, 33, 49, 50, 31, 60 ); $n = sizeof( $arr ); echo "Length of Longest Zig-Zag subsequence is " , zzis( $arr , $n ) ; echo "\n" ; #This code is contributed by aj_36 ?> |
Javascript
<script> // Javascript program to find longest // Zig-Zag subsequence in an array // Function to return longest // Zig-Zag subsequence length function zzis(arr, n) { /*Z[i][0] = Length of the longest Zig-Zag subsequence ending at index i and last element is greater than its previous element Z[i][1] = Length of the longest Zig-Zag subsequence ending at index i and last element is smaller than its previous element */ let Z = new Array(n); for (let i = 0; i < n; i++) { Z[i] = new Array(2); } /* Initialize all values from 1 */ for (let i = 0; i < n; i++) Z[i][0] = Z[i][1] = 1; let res = 1; // Initialize result /* Compute values in bottom up manner */ for (let i = 1; i < n; i++) { // Consider all elements as // previous of arr[i] for (let j = 0; j < i; j++) { // If arr[i] is greater, then // check with Z[j][1] if (arr[j] < arr[i] && Z[i][0] < Z[j][1] + 1) Z[i][0] = Z[j][1] + 1; // If arr[i] is smaller, then // check with Z[j][0] if ( arr[j] > arr[i] && Z[i][1] < Z[j][0] + 1) Z[i][1] = Z[j][0] + 1; } /* Pick maximum of both values at index i */ if (res < Math.max(Z[i][0], Z[i][1])) res = Math.max(Z[i][0], Z[i][1]); } return res; } let arr = [ 10, 22, 9, 33, 49, 50, 31, 60 ]; let n = arr.length; document.write( "Length of Longest " + "Zig-Zag subsequence is " + zzis(arr, n)); </script> |
Length of Longest Zig-Zag subsequence is 6
Time Complexity : O(n2)
Auxiliary Space : O(n)
A better approach with time complexity O(n) is explained below:
Let the sequence be stored in an unsorted integer array arr[N].
We shall proceed by comparing the mathematical signs(negative or positive) of the difference of two consecutive elements of arr. To achieve this, we shall store the sign of (arr[i] – arr[i-1]) in a variable, subsequently comparing it with that of (arr[i+1] – arr[i]). If it is different, we shall increment our result. For checking the sign, we shall use a simple Signum Function, which shall determine the sign of a number passed to it. That is,
Considering the fact that we traverse the sequence only once, this becomes an O(n) solution.
The algorithm for the approach discussed above is :
Input integer array seq[N]. Initialize integer lastSign to 0. FOR i in range 1 to N - 1 integer sign = signum(seq[i] - seq[i-1]) IF sign != lastSign AND IF sign != 0 increment length by 1. lastSign = sign. END IF END FOR return length.
Following is the implementation of the above approach:
C++
/*CPP program to find the maximum length of zig-zag sub-sequence in given sequence*/ #include <bits/stdc++.h> #include <iostream> using namespace std; // Function prototype. int signum( int n); /* Function to calculate maximum length of zig-zag sub-sequence in given sequence. */ int maxZigZag( int seq[], int n) { if (n == 0) { return 0; } int lastSign = 0, length = 1; // Length is initialized to 1 as // that is minimum value // for arbitrary sequence. for ( int i = 1; i < n; ++i) { int Sign = signum(seq[i] - seq[i - 1]); // It qualifies if (Sign != lastSign && Sign != 0) { // Updating lastSign lastSign = Sign; length++; } } return length; } /* Signum function : Returns 1 when passed a positive integer Returns -1 when passed a negative integer Returns 0 when passed 0. */ int signum( int n) { if (n != 0) { return n > 0 ? 1 : -1; } else { return 0; } } // Driver method int main() { int sequence1[4] = { 1, 3, 6, 2 }; int sequence2[5] = { 5, 0, 3, 1, 0 }; int n1 = sizeof (sequence1) / sizeof (*sequence1); // size of sequences int n2 = sizeof (sequence2) / sizeof (*sequence2); int maxLength1 = maxZigZag(sequence1, n1); int maxLength2 = maxZigZag(sequence2, n2); // function call cout << "The maximum length of zig-zag sub-sequence in " "first sequence is: " << maxLength1; cout << endl; cout << "The maximum length of zig-zag sub-sequence in " "second sequence is: " << maxLength2; } |
Java
// Java code to find out maximum length of zig-zag // sub-sequence in given sequence import java.util.*; import java.io.*; class zigZagMaxLength { // Driver method public static void main(String[] args) { int [] sequence1 = { 1 , 3 , 6 , 2 }; int [] sequence2 = { 5 , 0 , 3 , 1 , 0 }; int n1 = sequence1.length; // size of sequences int n2 = sequence2.length; int maxLength1 = maxZigZag(sequence1, n1); int maxLength2 = maxZigZag(sequence2, n2); // function call System.out.println( "The maximum length of zig-zag sub-sequence in first sequence is: " + maxLength1); System.out.println( "The maximum length of zig-zag sub-sequence in second sequence is: " + maxLength2); } /* Function to calculate maximum length of zig-zag sub-sequence in given sequence. */ static int maxZigZag( int [] seq, int n) { if (n == 0 ) { return 0 ; } int lastSign = 0 , length = 1 ; // length is initialized to 1 as that is minimum // value for arbitrary sequence. for ( int i = 1 ; i < n; ++i) { int Sign = signum(seq[i] - seq[i - 1 ]); if (Sign != 0 && Sign != lastSign) // it qualifies { lastSign = Sign; // updating lastSign length++; } } return length; } /* Signum function : Returns 1 when passed a positive integer Returns -1 when passed a negative integer Returns 0 when passed 0. */ static int signum( int n) { if (n != 0 ) { return n > 0 ? 1 : - 1 ; } else { return 0 ; } } } |
Python3
# Python3 program to find the maximum # length of zig-zag sub-sequence in # given sequence # Function to calculate maximum length # of zig-zag sub-sequence in given sequence. def maxZigZag(seq, n): if (n = = 0 ): return 0 lastSign = 0 # Length is initialized to 1 as that is # minimum value for arbitrary sequence length = 1 for i in range ( 1 , n): Sign = signum(seq[i] - seq[i - 1 ]) # It qualifies if (Sign ! = lastSign and Sign ! = 0 ): # Updating lastSign lastSign = Sign length + = 1 return length # Signum function : # Returns 1 when passed a positive integer # Returns -1 when passed a negative integer # Returns 0 when passed 0. def signum(n): if (n ! = 0 ): return 1 if n > 0 else - 1 else : return 0 # Driver code if __name__ = = '__main__' : sequence1 = [ 1 , 3 , 6 , 2 ] sequence2 = [ 5 , 0 , 3 , 1 , 0 ] n1 = len (sequence1) n2 = len (sequence2) # Function call maxLength1 = maxZigZag(sequence1, n1) maxLength2 = maxZigZag(sequence2, n2) print ( "The maximum length of zig-zag sub-sequence " "in first sequence is:" , maxLength1) print ( "The maximum length of zig-zag sub-sequence " "in second sequence is:" , maxLength2) # This code is contributed by himanshu77 |
C#
// C# code to find out maximum length of // zig-zag sub-sequence in given sequence using System; class zigZagMaxLength { // Driver method public static void Main(String[] args) { int [] sequence1 = { 1, 3, 6, 2 }; int [] sequence2 = { 5, 0, 3, 1, 0 }; int n1 = sequence1.Length; // size of sequences int n2 = sequence2.Length; int maxLength1 = maxZigZag(sequence1, n1); int maxLength2 = maxZigZag(sequence2, n2); // function call Console.WriteLine( "The maximum length of zig-zag sub-sequence" + " in first sequence is: " + maxLength1); Console.WriteLine( "The maximum length of zig-zag " + "sub-sequence in second sequence is: " + maxLength2); } /* Function to calculate maximum length of zig-zag sub-sequence in given sequence. */ static int maxZigZag( int [] seq, int n) { if (n == 0) { return 0; } // length is initialized to 1 as that is minimum // value for arbitrary sequence. int lastSign = 0, length = 1; for ( int i = 1; i < n; ++i) { int Sign = signum(seq[i] - seq[i - 1]); if (Sign != 0 && Sign != lastSign) // it qualifies { lastSign = Sign; // updating lastSign length++; } } return length; } /* Signum function : Returns 1 when passed a positive integer Returns -1 when passed a negative integer Returns 0 when passed 0. */ static int signum( int n) { if (n != 0) { return n > 0 ? 1 : -1; } else { return 0; } } } // This code is contributed by Rajput-Ji |
Javascript
<script> // Javascript code to find out maximum length of // zig-zag sub-sequence in given sequence /* Function to calculate maximum length of zig-zag sub-sequence in given sequence. */ function maxZigZag(seq, n) { if (n == 0) { return 0; } // length is initialized to 1 as that is minimum // value for arbitrary sequence. let lastSign = 0, length = 1; for (let i = 1; i < n; ++i) { let Sign = signum(seq[i] - seq[i - 1]); if (Sign != 0 && Sign != lastSign) // it qualifies { lastSign = Sign; // updating lastSign length++; } } return length; } /* Signum function : Returns 1 when passed a positive integer Returns -1 when passed a negative integer Returns 0 when passed 0. */ function signum(n) { if (n != 0) { return n > 0 ? 1 : -1; } else { return 0; } } let sequence1 = [ 1, 3, 6, 2 ]; let sequence2 = [ 5, 0, 3, 1, 0 ]; let n1 = sequence1.length; // size of sequences let n2 = sequence2.length; let maxLength1 = maxZigZag(sequence1, n1); let maxLength2 = maxZigZag(sequence2, n2); // function call document.write( "The maximum length of zig-zag sub-sequence" + " in first sequence is: " + maxLength1 + "</br>" ); document.write( "The maximum length of zig-zag " + "sub-sequence in second sequence is: " + maxLength2 + "</br>" ); </script> |
The maximum length of zig-zag sub-sequence in first sequence is: 3 The maximum length of zig-zag sub-sequence in second sequence is: 4
Time Complexity : O(n)
Auxiliary Space : O(1)
This article is contributed by Utkarsh Trivedi. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!