Given an array of n distinct elements, find length of the largest subset such that every pair in the subset is such that the larger element of the pair is divisible by smaller element.
Examples:
Input : arr[] = {10, 5, 3, 15, 20}
Output : 3
Explanation: The largest subset is 10, 5, 20.
10 is divisible by 5, and 20 is divisible by 10.
Input : arr[] = {18, 1, 3, 6, 13, 17}
Output : 4
Explanation: The largest subset is 18, 1, 3, 6,
In the subsequence, 3 is divisible by 1,
6 by 3 and 18 by 6.
Brute Force Approach: The brute force approach generates all possible subsets of the input array using bit manipulation and checks if each subset contains only pairs of elements that are divisible. It keeps track of the largest subset that satisfies this condition and returns it as the result.
- Initialize maxSubset = 1
- For each subset S of the input array a:
- Initialize subsetSize = 0 and validSubset = true
- For each pair of elements (a[i], a[j]) in S:
- If a[i] % a[j] != 0 and a[j] % a[i] != 0, set validSubset = false and break out of the loop.
- Otherwise, continue to the next pair.
- If validSubset is still true, increment subsetSize by 1
- If subsetSize is greater than maxSubset, set maxSubset = subsetSize
- Return maxSubset as the result
C++
#include <bits/stdc++.h> using namespace std; int largestSubset( int a[], int n) { int maxSubset = 1; // variable to store the maximum subset size // found so far, initialized to 1 for ( int i = 0; i < (1 << n); i++) { // loop through all possible subsets of the // input array int subsetSize = 0; // variable to store the size of the // current subset being considered bool validSubset = true ; // variable to keep track of whether the // current subset is valid or not for ( int j = 0; j < n; j++) { // loop through all elements in the // input array if (i & (1 << j)) { // check if the j-th element // is present in the current // subset being considered for ( int k = j + 1; k < n; k++) { // loop through all elements // after the j-th element if (i & (1 << k)) { // check if the k-th // element is present in // the current subset // being considered if (a[j] % a[k] != 0 && a[k] % a[j] != 0) { // check if the // pair (a[j], // a[k]) is not // divisible validSubset = false ; // if the pair is // not divisible, // mark the current // subset as // invalid break ; // break out of the inner // loop since we don't // need to check any more // pairs } } } if (validSubset) { // if the current subset // is still valid after // checking all pairs, // increment the subset // size subsetSize++; } else { // if the current subset is not // valid, break out of the outer loop // since we don't need to consider // this subset anymore break ; } } } maxSubset = max(maxSubset, subsetSize); // update the maximum subset // size found so far } return maxSubset; // return the maximum subset size // found } int main() { int a[] = {10, 5, 3, 15, 20 }; // sample input array int n = sizeof (a) / sizeof (a[0]); // size of the input array cout << largestSubset(a, n) << endl; // call the function and print the result return 0; } |
Java
import java.util.*; class Main { public static int largestSubset( int [] a, int n) { int maxSubset = 1 ; // variable to store the maximum subset size found so far, initialized to 1 for ( int i = 0 ; i < ( 1 << n); i++) { // loop through all possible subsets of the input array int subsetSize = 0 ; // variable to store the size of the current subset being considered boolean validSubset = true ; // variable to keep track of whether the current subset is valid or not for ( int j = 0 ; j < n; j++) { // loop through all elements in the input array if ((i & ( 1 << j)) != 0 ) { // check if the j-th element is present in the current subset being considered for ( int k = j + 1 ; k < n; k++) { // loop through all elements after the j-th element if ((i & ( 1 << k)) != 0 ) { // check if the k-th element is present in the current subset being considered if (a[j] % a[k] != 0 && a[k] % a[j] != 0 ) { // check if the pair (a[j], a[k]) is not divisible validSubset = false ; // if the pair is not divisible, mark the current subset as invalid break ; // break out of the inner loop since we don't need to check any more pairs } } } if (validSubset) { // if the current subset is still valid after checking all pairs, increment the subset size subsetSize++; } else { // if the current subset is not valid, break out of the outer loop since we don't need to consider this subset anymore break ; } } } maxSubset = Math.max(maxSubset, subsetSize); // update the maximum subset size found so far } return maxSubset; // return the maximum subset size found } public static void main(String[] args) { int [] a = { 10 , 5 , 3 , 15 , 20 }; // sample input array int n = a.length; // size of the input array System.out.println(largestSubset(a, n)); // call the function and print the result } } |
Python3
# Implementation of largestSubset function in Python def largestSubset(a, n): maxSubset = 1 # variable to store the maximum subset size # found so far, initialized to 1 for i in range ( 1 << n): # loop through all possible subsets of the # input array subsetSize = 0 # variable to store the size of the # current subset being considered validSubset = True # variable to keep track of whether the # current subset is valid or not for j in range (n): # loop through all elements in the # input array if i & ( 1 << j): # check if the j-th element # is present in the current # subset being considered for k in range (j + 1 , n): # loop through all elements # after the j-th element if i & ( 1 << k): # check if the k-th # element is present in # the current subset # being considered if a[j] % a[k] ! = 0 and a[k] % a[j] ! = 0 : # check if the pair (a[j], a[k]) is not # divisible validSubset = False # if the pair is # not divisible, # mark the current # subset as # invalid break # break out of the inner # loop since we don't # need to check any more # pairs if validSubset: # if the current subset # is still valid after # checking all pairs, # increment the subset # size subsetSize + = 1 else : # if the current subset is not # valid, break out of the outer loop # since we don't need to consider # this subset anymore break maxSubset = max (maxSubset, subsetSize) # update the maximum subset # size found so far return maxSubset # return the maximum subset size # found # Sample input array a = [ 10 , 5 , 3 , 15 , 20 ] n = len (a) # size of the input array print (largestSubset(a, n)) # call the function and print the result |
C#
using System; class GFG { static int LargestSubset( int [] a, int n) { int maxSubset = 1; // variable to store the maximum subset size // found so far, initialized to 1 for ( int i = 0; i < (1 << n); i++) { // loop through all possible subsets of the input array int subsetSize = 0; // variable to store the size of the // current subset being considered bool validSubset = true ; // variable to keep track of whether the // current subset is valid or not for ( int j = 0; j < n; j++) { // loop through all elements in the input array if ((i & (1 << j)) != 0) { // check if the j-th element is present in the current // subset being considered for ( int k = j + 1; k < n; k++) { // loop through all elements after the j-th element if ((i & (1 << k)) != 0) { // check if the k-th element is present in // the current subset being considered if (a[j] % a[k] != 0 && a[k] % a[j] != 0) { // check if the pair (a[j], a[k]) is not divisible validSubset = false ; // if the pair is not divisible, // mark the current subset as invalid break ; // break out of the inner loop since we don't // need to check any more pairs } } } if (validSubset) { // if the current subset is still valid after // checking all pairs, increment the subset size subsetSize++; } else { // if the current subset is not valid, break out of the outer loop // since we don't need to consider this subset anymore break ; } } } maxSubset = Math.Max(maxSubset, subsetSize); // update the maximum subset // size found so far } return maxSubset; // return the maximum subset size found } static void Main() { int [] a = { 10, 5, 3, 15, 20 }; // sample input array int n = a.Length; // size of the input array Console.WriteLine(LargestSubset(a, n)); // call the function and print the result } } |
3
Time Complexity: O(2n*n2)
Space Complexity: O(1)
Dynamic programming Approach: This can be solved using Dynamic Programming. We traverse the sorted array from the end. For every element a[i], we compute dp[i] where dp[i] indicates size of largest divisible subset where a[i] is the smallest element. We can compute dp[i] in array using values from dp[i+1] to dp[n-1]. Finally, we return the maximum value from dp[].
Below is the implementation of the above approach:
C++
// CPP program to find the largest subset which // where each pair is divisible. #include <bits/stdc++.h> using namespace std; // function to find the longest Subsequence int largestSubset( int a[], int n) { // dp[i] is going to store size of largest // divisible subset beginning with a[i]. int dp[n]; // Since last element is largest, d[n-1] is 1 dp[n - 1] = 1; // Fill values for smaller elements. for ( int i = n - 2; i >= 0; i--) { // Find all multiples of a[i] and consider // the multiple that has largest subset // beginning with it. int mxm = 0; for ( int j = i + 1; j < n; j++) if (a[j] % a[i] == 0 || a[i] % a[j] == 0) mxm = max(mxm, dp[j]); dp[i] = 1 + mxm; } // Return maximum value from dp[] return *max_element(dp, dp + n); } // driver code to check the above function int main() { int a[] = { 1, 3, 6, 13, 17, 18 }; int n = sizeof (a) / sizeof (a[0]); cout << largestSubset(a, n) << endl; return 0; } |
Java
import java.util.Arrays; // Java program to find the largest // subset which was each pair // is divisible. class GFG { // function to find the longest Subsequence static int largestSubset( int [] a, int n) { // dp[i] is going to store size of largest // divisible subset beginning with a[i]. int [] dp = new int [n]; // Since last element is largest, d[n-1] is 1 dp[n - 1 ] = 1 ; // Fill values for smaller elements. for ( int i = n - 2 ; i >= 0 ; i--) { // Find all multiples of a[i] and consider // the multiple that has largest subset // beginning with it. int mxm = 0 ; for ( int j = i + 1 ; j < n; j++) { if (a[j] % a[i] == 0 || a[i] % a[j] == 0 ) { mxm = Math.max(mxm, dp[j]); } } dp[i] = 1 + mxm; } // Return maximum value from dp[] return Arrays.stream(dp).max().getAsInt(); } // driver code to check the above function public static void main(String[] args) { int [] a = { 1 , 3 , 6 , 13 , 17 , 18 }; int n = a.length; System.out.println(largestSubset(a, n)); } } /* This JAVA code is contributed by Rajput-Ji*/ |
Python3
# Python program to find the largest # subset where each pair is divisible. # function to find the longest Subsequence def largestSubset(a, n): # dp[i] is going to store size # of largest divisible subset # beginning with a[i]. dp = [ 0 for i in range (n)] # Since last element is largest, # d[n-1] is 1 dp[n - 1 ] = 1 ; # Fill values for smaller elements for i in range (n - 2 , - 1 , - 1 ): # Find all multiples of a[i] # and consider the multiple # that has largest subset # beginning with it. mxm = 0 ; for j in range (i + 1 , n): if a[j] % a[i] = = 0 or a[i] % a[j] = = 0 : mxm = max (mxm, dp[j]) dp[i] = 1 + mxm # Return maximum value from dp[] return max (dp) # Driver Code a = [ 1 , 3 , 6 , 13 , 17 , 18 ] n = len (a) print (largestSubset(a, n)) # This code is contributed by # sahil shelangia |
C#
// C# program to find the largest // subset which where each pair // is divisible. using System; using System.Linq; public class GFG { // function to find the longest Subsequence static int largestSubset( int [] a, int n) { // dp[i] is going to store size of largest // divisible subset beginning with a[i]. int [] dp = new int [n]; // Since last element is largest, d[n-1] is 1 dp[n - 1] = 1; // Fill values for smaller elements. for ( int i = n - 2; i >= 0; i--) { // Find all multiples of a[i] and consider // the multiple that has largest subset // beginning with it. int mxm = 0; for ( int j = i + 1; j < n; j++) if (a[j] % a[i] == 0 | a[i] % a[j] == 0) mxm = Math.Max(mxm, dp[j]); dp[i] = 1 + mxm; } // Return maximum value from dp[] return dp.Max(); } // driver code to check the above function static public void Main() { int [] a = { 1, 3, 6, 13, 17, 18 }; int n = a.Length; Console.WriteLine(largestSubset(a, n)); } } // This code is contributed by vt_m. |
Javascript
<script> // Javascript program to find the largest // subset which was each pair // is divisible. // Function to find the longest Subsequence function largestSubset(a, n) { // dp[i] is going to store size of largest // divisible subset beginning with a[i]. let dp = []; // Since last element is largest, d[n-1] is 1 dp[n - 1] = 1; // Fill values for smaller elements. for (let i = n - 2; i >= 0; i--) { // Find all multiples of a[i] and consider // the multiple that has largest subset // beginning with it. let mxm = 0; for (let j = i + 1; j < n; j++) { if (a[j] % a[i] == 0 || a[i] % a[j] == 0) { mxm = Math.max(mxm, dp[j]); } } dp[i] = 1 + mxm; } // Return maximum value from dp[] return Math.max(...dp); } // Driver code let a = [ 1, 3, 6, 13, 17, 18 ]; let n = a.length; document.write(largestSubset(a, n)); // This code is contributed by sanjoy_62 </script> |
PHP
<?php // PHP program to find the // largest subset which // where each pair is // divisible. // function to find the // longest Subsequence function largestSubset( $a , $n ) { // dp[i] is going to // store size of largest // divisible subset // beginning with a[i]. $dp = array (); // Since last element is // largest, d[n-1] is 1 $dp [ $n - 1] = 1; // Fill values for // smaller elements. for ( $i = $n - 2; $i >= 0; $i --) { // Find all multiples of // a[i] and consider // the multiple that // has largest subset // beginning with it. $mxm = 0; for ( $j = $i + 1; $j < $n ; $j ++) if ( $a [ $j ] % $a [ $i ] == 0 or $a [ $i ] % $a [ $j ] == 0) $mxm = max( $mxm , $dp [ $j ]); $dp [ $i ] = 1 + $mxm ; } // Return maximum value // from dp[] return max( $dp ); } // Driver Code $a = array (1, 3, 6, 13, 17, 18); $n = count ( $a ); echo largestSubset( $a , $n ); // This code is contributed by anuj_67. ?> |
4
Time Complexity: O(n2)
Space Complexity: O(n)
Largest divisible pairs subset in c:
Approach
1. Create an array dp of size n to store the size of the largest divisible subset ending with each element of the array arr.
2. Initialize all elements of the dp array to 1, as every element is a divisible subset of itself.
3. For every element arr[i] in the array, check all previous elements arr[j] (where j < i) to see if arr[i] is divisible by arr[j] or arr[j] is divisible by arr[i].
4. If arr[i] is divisible by arr[j] or arr[j] is divisible by arr[i], then we can extend the divisible subset ending with arr[j] by including the arr[i] element as well. We will choose the arr[j] element which gives the largest divisible subset ending with arr[j].
5. Update the dp array with the size of the largest divisible subset ending with arr[i].
6. Keep track of the maximum element in the dp array, which gives the largest divisible subset among all elements.
7. Return the maximum element in the dp array.
8. In the main() function, create an array arr of integers and call the largest_divisible_pairs_subset() function with the array and its size.
9. Print the result returned by the largest_divisible_pairs_subset() function, which gives the size of the largest divisible subset.
C++
#include <bits/stdc++.h> using namespace std; int largest_divisible_pairs_subset( int arr[], int n) { vector< int > dp(n, 1); int max_dp = 1; // Compute dp array for ( int i = 1; i < n; i++) { for ( int j = 0; j < i; j++) { if (arr[i] % arr[j] == 0 || arr[j] % arr[i] == 0) { dp[i] = max(dp[j] + 1, dp[i]); } } max_dp = max(dp[i], max_dp); } return max_dp; } int main() { int arr[] = {3, 5, 10, 20, 21, 33}; int n = sizeof (arr)/ sizeof (arr[0]); cout << largest_divisible_pairs_subset(arr, n); return 0; } |
C
#include <stdio.h> #include <stdlib.h> int largest_divisible_pairs_subset( int arr[], int n) { int dp[n]; int i, j, max_dp = 1; // Initialize dp array for (i = 0; i < n; i++) { dp[i] = 1; } // Compute dp array for (i = 1; i < n; i++) { for (j = 0; j < i; j++) { if (arr[i] % arr[j] == 0 || arr[j] % arr[i] == 0) { dp[i] = dp[j] + 1 > dp[i] ? dp[j] + 1 : dp[i]; } } max_dp = dp[i] > max_dp ? dp[i] : max_dp; } return max_dp; } int main() { int arr[] = {3, 5, 10, 20, 21, 33}; int n = sizeof (arr)/ sizeof (arr[0]); printf ( "%d" , largest_divisible_pairs_subset(arr, n)); return 0; } |
Java
// Java program for the above approach import java.util.*; public class Main { // Function to find the largest divisible // subset in a given array public static int largestDivisiblePairsSubset( int arr[], int n) { // Stores the recurring state int [] dp = new int [n]; Arrays.fill(dp, 1 ); int maxDp = 1 ; // Compute dp array for ( int i = 1 ; i < n; i++) { for ( int j = 0 ; j < i; j++) { if (arr[i] % arr[j] == 0 || arr[j] % arr[i] == 0 ) { dp[i] = Math.max(dp[j] + 1 , dp[i]); } } maxDp = Math.max(dp[i], maxDp); } // Return the maximum value return maxDp; } // Driver Code public static void main(String[] args) { int arr[] = { 3 , 5 , 10 , 20 , 21 , 33 }; int n = arr.length; System.out.println( largestDivisiblePairsSubset(arr, n)); } } |
Python3
import sys def largest_divisible_pairs_subset(arr, n): dp = [ 1 ] * n max_dp = 1 # Compute dp array for i in range ( 1 , n): for j in range (i): if arr[i] % arr[j] = = 0 or arr[j] % arr[i] = = 0 : dp[i] = max (dp[j] + 1 , dp[i]) max_dp = max (dp[i], max_dp) return max_dp if __name__ = = '__main__' : arr = [ 3 , 5 , 10 , 20 , 21 , 33 ] n = len (arr) print (largest_divisible_pairs_subset(arr, n)) # This code is contributed by shivhack9999 |
C#
using System; class GFG { static int largest_divisible_pairs_subset( int [] arr, int n) { // Initialize dp array int [] dp = new int [n]; for ( int i = 0; i < n; i++) dp[i] = 1; int max_dp = 1; // Compute dp array for ( int i = 1; i < n; i++) { for ( int j = 0; j < i; j++) { if (arr[i] % arr[j] == 0 || arr[j] % arr[i] == 0) { dp[i] = Math.Max(dp[j] + 1, dp[i]); } } max_dp = Math.Max(dp[i], max_dp); } return max_dp; } // Driver code public static void Main() { int [] arr = { 3, 5, 10, 20, 21, 33 }; int n = arr.Length; Console.WriteLine( largest_divisible_pairs_subset(arr, n)); } } |
Javascript
function largest_divisible_pairs_subset(arr, n) { const dp = new Array(n).fill(1); let max_dp = 1; // Compute dp array for (let i = 1; i < n; i++) { for (let j = 0; j < i; j++) { if (arr[i] % arr[j] === 0 || arr[j] % arr[i] === 0) { dp[i] = Math.max(dp[j] + 1, dp[i]); } } max_dp = Math.max(dp[i], max_dp); } return max_dp; } const arr = [3, 5, 10, 20, 21, 33]; const n = arr.length; console.log(largest_divisible_pairs_subset(arr, n)); |
3
Time Complexity:
The time complexity of the above algorithm is O(n^2), as we need to check all previous elements for each element.
Auxiliary Space:
The space complexity of the above algorithm is O(n), as we are only using an array of size n to store the largest divisible subset ending with each element.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!