Given an adjacency matrix adj[][] of an undirected graph consisting of N vertices, the task is to find whether the graph contains a Hamiltonian Path or not. If found to be true, then print “Yes”. Otherwise, print “No”.
A Hamiltonian path is defined as the path in a directed or undirected graph which visits each and every vertex of the graph exactly once.
Examples:
Input: adj[][] = {{0, 1, 1, 1, 0}, {1, 0, 1, 0, 1}, {1, 1, 0, 1, 1}, {1, 0, 1, 0, 0}}
Output: Yes
Explanation:
There exists a Hamiltonian Path for the given graph as shown in the image below:Input: adj[][] = {{0, 1, 0, 0}, {1, 0, 1, 1}, {0, 1, 0, 0}, {0, 1, 0, 0}}
Output: No
Naive Approach: The simplest approach to solve the given problem is to generate all the possible permutations of N vertices. For each permutation, check if it is a valid Hamiltonian path by checking if there is an edge between adjacent vertices or not. If found to be true, then print “Yes”. Otherwise, print “No”.
Time Complexity: O(N * N!)
Auxiliary Space: O(1)
Efficient Approach: The above approach can be optimized by using Dynamic Programming and Bit Masking which is based on the following observations:
- The idea is such that for every subset S of vertices, check whether there is a hamiltonian path in the subset S that ends at vertex v where v € S.
- If v has a neighbor u, where u € S – {v}, therefore, there exists a Hamiltonian path that ends at vertex u.
- The problem can be solved by generalizing the subset of vertices and the ending vertex of the Hamiltonian path.
Follow the steps below to solve the problem:
- Initialize a boolean matrix dp[][] in dimension N*2N where dp[j ][i] represents whether there exists a path in the subset or not represented by the mask i that visits each and every vertex in i once and ends at vertex j.
- For the base case, update dp[i][1 << i] = true, for i in range [0, N – 1]
- Iterate over the range [1, 2N – 1] using the variable i and perform the following steps:
- All the vertices with bits set in mask i, are included in the subset.
- Iterate over the range [1, N] using the variable j that will represent the end vertex of the hamiltonian path of current subset mask i and perform the following steps:
- If the value of i and 2j is true, then iterate over the range [1, N] using the variable k and if the value of dp[k][i^2j] is true, then mark dp[j][i] is true and break out of the loop.
- Otherwise, continue to the next iteration.
- Iterate over the range using the variable i and if the value of dp[i][2N – 1] is true, then there exists a hamiltonian path ending at vertex i. Therefore, print “Yes”. Otherwise, print “No”.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; const int N = 5; // Function to check whether there // exists a Hamiltonian Path or not bool Hamiltonian_path( vector<vector< int > >& adj, int N) { int dp[N][(1 << N)]; // Initialize the table memset (dp, 0, sizeof dp); // Set all dp[i][(1 << i)] to // true for ( int i = 0; i < N; i++) dp[i][(1 << i)] = true ; // Iterate over each subset // of nodes for ( int i = 0; i < (1 << N); i++) { for ( int j = 0; j < N; j++) { // If the jth nodes is included // in the current subset if (i & (1 << j)) { // Find K, neighbour of j // also present in the // current subset for ( int k = 0; k < N; k++) { if (i & (1 << k) && adj[k][j] && j != k && dp[k][i ^ (1 << j)]) { // Update dp[j][i] // to true dp[j][i] = true ; break ; } } } } } // Traverse the vertices for ( int i = 0; i < N; i++) { // Hamiltonian Path exists if (dp[i][(1 << N) - 1]) return true ; } // Otherwise, return false return false ; } // Driver Code int main() { // Input vector<vector< int > > adj = { { 0, 1, 1, 1, 0 }, { 1, 0, 1, 0, 1 }, { 1, 1, 0, 1, 1 }, { 1, 0, 1, 0, 0 } }; int N = adj.size(); // Function Call if (Hamiltonian_path(adj, N)) cout << "YES" ; else cout << "NO" ; return 0; } |
Java
// Java program for the above approach import java.io.*; import java.lang.*; import java.util.*; class GFG{ // Function to check whether there // exists a Hamiltonian Path or not static boolean Hamiltonian_path( int adj[][], int N) { boolean dp[][] = new boolean [N][( 1 << N)]; // Set all dp[i][(1 << i)] to // true for ( int i = 0 ; i < N; i++) dp[i][( 1 << i)] = true ; // Iterate over each subset // of nodes for ( int i = 0 ; i < ( 1 << N); i++) { for ( int j = 0 ; j < N; j++) { // If the jth nodes is included // in the current subset if ((i & ( 1 << j)) != 0 ) { // Find K, neighbour of j // also present in the // current subset for ( int k = 0 ; k < N; k++) { if ((i & ( 1 << k)) != 0 && adj[k][j] == 1 && j != k && dp[k][i ^ ( 1 << j)]) { // Update dp[j][i] // to true dp[j][i] = true ; break ; } } } } } // Traverse the vertices for ( int i = 0 ; i < N; i++) { // Hamiltonian Path exists if (dp[i][( 1 << N) - 1 ]) return true ; } // Otherwise, return false return false ; } // Driver Code public static void main(String[] args) { int adj[][] = { { 0 , 1 , 1 , 1 , 0 }, { 1 , 0 , 1 , 0 , 1 }, { 1 , 1 , 0 , 1 , 1 }, { 1 , 0 , 1 , 0 , 0 } }; int N = adj.length; // Function Call if (Hamiltonian_path(adj, N)) System.out.println( "YES" ); else System.out.println( "NO" ); } } // This code is contributed by Kingash |
Python3
# Python3 program for the above approach # Function to check whether there # exists a Hamiltonian Path or not def Hamiltonian_path(adj, N): dp = [[ False for i in range ( 1 << N)] for j in range (N)] # Set all dp[i][(1 << i)] to # true for i in range (N): dp[i][ 1 << i] = True # Iterate over each subset # of nodes for i in range ( 1 << N): for j in range (N): # If the jth nodes is included # in the current subset if ((i & ( 1 << j)) ! = 0 ): # Find K, neighbour of j # also present in the # current subset for k in range (N): if ((i & ( 1 << k)) ! = 0 and adj[k][j] = = 1 and j ! = k and dp[k][i ^ ( 1 << j)]): # Update dp[j][i] # to true dp[j][i] = True break # Traverse the vertices for i in range (N): # Hamiltonian Path exists if (dp[i][( 1 << N) - 1 ]): return True # Otherwise, return false return False # Driver Code adj = [ [ 0 , 1 , 1 , 1 , 0 ] , [ 1 , 0 , 1 , 0 , 1 ], [ 1 , 1 , 0 , 1 , 1 ], [ 1 , 0 , 1 , 0 , 0 ] ] N = len (adj) if (Hamiltonian_path(adj, N)): print ( "YES" ) else : print ( "NO" ) # This code is contributed by maheshwaripiyush9 |
C#
// C# program for the above approach using System; class GFG{ // Function to check whether there // exists a Hamiltonian Path or not static bool Hamiltonian_path( int [,] adj, int N) { bool [,] dp = new bool [N, (1 << N)]; // Set all dp[i][(1 << i)] to // true for ( int i = 0; i < N; i++) dp[i, (1 << i)] = true ; // Iterate over each subset // of nodes for ( int i = 0; i < (1 << N); i++) { for ( int j = 0; j < N; j++) { // If the jth nodes is included // in the current subset if ((i & (1 << j)) != 0) { // Find K, neighbour of j // also present in the // current subset for ( int k = 0; k < N; k++) { if ((i & (1 << k)) != 0 && adj[k, j] == 1 && j != k && dp[k, i ^ (1 << j)]) { // Update dp[j][i] // to true dp[j, i] = true ; break ; } } } } } // Traverse the vertices for ( int i = 0; i < N; i++) { // Hamiltonian Path exists if (dp[i, (1 << N) - 1]) return true ; } // Otherwise, return false return false ; } // Driver Code public static void Main(String[] args) { int [,] adj = { { 0, 1, 1, 1, 0 }, { 1, 0, 1, 0, 1 }, { 1, 1, 0, 1, 1 }, { 1, 0, 1, 0, 0 } }; int N = adj.GetLength(0); // Function Call if (Hamiltonian_path(adj, N)) Console.WriteLine( "YES" ); else Console.WriteLine( "NO" ); } } // This code is contributed by ukasp |
Javascript
<script> // Javascript program for the above approach var N = 5; // Function to check whether there // exists a Hamiltonian Path or not function Hamiltonian_path( adj, N) { var dp = Array.from(Array(N), ()=> Array(1 << N).fill(0)); // Set all dp[i][(1 << i)] to // true for ( var i = 0; i < N; i++) dp[i][(1 << i)] = true ; // Iterate over each subset // of nodes for ( var i = 0; i < (1 << N); i++) { for ( var j = 0; j < N; j++) { // If the jth nodes is included // in the current subset if (i & (1 << j)) { // Find K, neighbour of j // also present in the // current subset for ( var k = 0; k < N; k++) { if (i & (1 << k) && adj[k][j] && j != k && dp[k][i ^ (1 << j)]) { // Update dp[j][i] // to true dp[j][i] = true ; break ; } } } } } // Traverse the vertices for ( var i = 0; i < N; i++) { // Hamiltonian Path exists if (dp[i][(1 << N) - 1]) return true ; } // Otherwise, return false return false ; } // Driver Code // Input var adj = [ [ 0, 1, 1, 1, 0 ], [ 1, 0, 1, 0, 1 ], [ 1, 1, 0, 1, 1 ], [ 1, 0, 1, 0, 0 ] ]; var N = adj.length; // Function Call if (Hamiltonian_path(adj, N)) document.write( "YES" ); else document.write( "NO" ); </script> |
YES
Time Complexity: O(N2 * 2N)
Auxiliary Space: O(N * 2N)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!