Saturday, November 16, 2024
Google search engine
HomeLanguagesDynamic ProgrammingCounting Subsets with prime product property

Counting Subsets with prime product property

Given an array arr[] of size N. The task is to find a number of subsets whose product can be represented as a product of one or more distinct prime numbers. Modify your answer to the modulo of 109 + 7.

Example:

Input: N = 4, arr[] = {1, 2, 3, 4}
Output: 6
Explanation: The good subsets are:

  • [1, 2]: product is 2, which is the product of distinct prime 2.
  • [1, 2, 3]: product is 6, which is the product of distinct primes 2 and 3.
  • [1, 3]: product is 3, which is the product of distinct prime 3.
  • [2]: product is 2, which is the product of distinct prime 2.
  • [2, 3]: product is 6, which is the product of distinct primes 2 and 3.
  • [3]: product is 3, which is the product of distinct prime 3.

Input: N = 3, arr[] =  {2, 2, 3}
Output: 5
Explanation: The good subsets are : {2}, {2}, {2, 3}, {2, 3}, {3}

Approach: This can be solved with the following idea: 

The general approach for the given problem is to use dynamic programming to count the number of good subsets.

Below are the steps involved in the implementation of the code:

  • Create a static array map with a size of 31, along with a constant mod of 109 + 7.
  • Find the prime factors of each integer i from 2 to 30 and set the associated bits in map[i] if i is not a multiple of 4 or 9 or equal to 25.
  • Set the first member of the integer array dp to 1 and initialize the integer variables one and cnt to have sizes of 1024 and 31, respectively  Step 4: If the appropriate map[i] value is non-zero and the integer i is not 1, increment one for each integer i in the provided array arr; otherwise, increment the count of i in the cnt array.
  • For each index, i in the cnt array where the value is non-zero, iterate through all the possible subsets of prime numbers using a nested loop over all the possible j values from 0 to 1023. If the jth bit is set and the map[i]th bit is also set, skip to the next j. Otherwise, update the dp[j| map[i]] value with the sum of its current value and the product of the count of i and the dp[j] value.
  • After the loops are complete, initialize a long variable res as 0, iterate through all the elements of the dp array, and update the res value as the sum of its current value and the current element’s value. Then decrement res by 1.
  • If the one value is non-zero, calculate its power using a helper function pow and multiply the result with res. Finally, return the result as an i integer.

Below is the code implementation of the above method:

C++




// C++ code of the above approach
#include <bits/stdc++.h>
using namespace std;
#define mod 1000000007
 
int map_[31];
 
// Function to calculate power
long long pow(int n)
{
    long long res = 1, m = 2;
    while (n != 0) {
        if ((n & 1) == 1)
            res = (res * m) % mod;
        m = m * m % mod;
        n >>= 1;
    }
    return res;
}
 
// Check for prime value
void check_prime_val()
{
    int prime[] = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 };
    for (int i = 2; i <= 30; ++i) {
        // If num is a multiple of
        // 4/9/25, adding it to any
        // subset will make it bad
        if (i % 4 == 0 || i % 9 == 0 || i == 25)
            continue;
        int mask = 0;
        for (int j = 0; j < 10; ++j) {
            if (i % prime[j] == 0)
                mask |= 1 << j;
        }
        map_[i] = mask;
    }
}
 
int goodSubsets(int arr[], int n)
{
    int one = 0;
    // dp[set_of_primes] represents
    // the number of times set_of_primes
    // can be formed (set_of_primes ===
    // mask) Since there are 10 possible
    // prime numbers, there are 2^10
    // possible set_of_primes
    int dp[1024] = { 0 }, cnt[31] = { 0 };
    dp[0] = 1;
    for (int i = 0; i < n; i++) {
        if (arr[i] == 1)
            one++;
        else if (map_[arr[i]] != 0)
            cnt[arr[i]]++;
    }
    for (int i = 0; i < 31; ++i) {
        if (cnt[i] == 0)
            continue;
        for (int j = 0; j < 1024; ++j) {
            if ((j & map_[i]) != 0)
                continue;
            dp[j | map_[i]]
                = (dp[j | map_[i]] + dp[j] * cnt[i]) % mod;
        }
    }
    long res = 0;
    for (int i : dp)
        res = (res + i) % mod;
    res--;
    if (one != 0)
        res = res * pow(one) % mod;
    return res;
}
// Driver code
int main()
{
    int arr[] = { 1, 2, 3, 4 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    check_prime_val();
    // Function call
    cout << goodSubsets(arr, n) << endl;
 
    return 0;
}
// This code is contributed by Tapesh(tapeshdua420)


Java




// Java code of the above approach
class Solution {
 
    static int mod = (int)1e9 + 7;
 
    static int[] map = new int[31];
 
    // Check for prime value
    static
    {
        int[] prime = new int[] { 2, 3, 5, 7, 11,
                                  13, 17, 19, 23, 29 };
        for (int i = 2; i <= 30; ++i) {
 
            // If num is a multiple of
            // 4/9/25, adding it to any
            // subset will make it bad
            if (0 == i % 4 || 0 == i % 9 || 25 == i)
                continue;
            int mask = 0;
            for (int j = 0; j < 10; ++j) {
                if (0 == i % prime[j])
                    mask |= 1 << j;
            }
            map[i] = mask;
        }
    }
 
    public int goodSubsets(int[] arr, int n)
    {
 
        int one = 0;
 
        // dp[set_of_primes] represents
        // the number of times set_of_primes
        // can be formed (set_of_primes ===
        // mask) Since there are 10 possible
        // prime numbers, there are 2^10
        // possible set_of_primes
        int[] dp = new int[1024], cnt = new int[31];
        dp[0] = 1;
        for (int i : arr) {
            if (i == 1)
                one++;
            else if (map[i] != 0)
                cnt[i]++;
        }
        for (int i = 0; i < 31; ++i) {
            if (cnt[i] == 0)
                continue;
            for (int j = 0; j < 1024; ++j) {
                if (0 != (j & map[i]))
                    continue;
                dp[j | map[i]]
                    = (int)((dp[j | map[i]]
                             + dp[j] * (long)cnt[i])
                            % mod);
            }
        }
        long res = 0;
        for (int i : dp)
            res = (res + i) % mod;
        res--;
        if (one != 0)
            res = res * pow(one) % mod;
        return (int)res;
    }
 
    // Function to calculate power
    public long pow(int n)
    {
        long res = 1, m = 2;
        while (n != 0) {
            if (1 == (n & 1))
                res = (res * m) % mod;
            m = m * m % mod;
            n >>= 1;
        }
        return res;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int[] arr = { 1, 2, 3, 4 };
        int n = arr.length;
        Solution solution = new Solution();
 
        // Function call
        int result = solution.goodSubsets(arr, n);
 
        System.out.println(result);
    }
}


Python3




# Python3 code of the above approach
from typing import List
 
 
class Solution:
    mod = int(1e9 + 7)
    map = [0] * 31
 
    # Check for prime value
    @staticmethod
    def calculatePrimes():
        prime = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
        for i in range(2, 31):
            if i % 4 == 0 or i % 9 == 0 or i == 25:
                continue
            mask = 0
            for j in range(10):
                if i % prime[j] == 0:
                    mask |= (1 << j)
            Solution.map[i] = mask
 
    def goodSubsets(self, arr: List[int], n: int) -> int:
        one = 0
        dp = [0] * 1024
        cnt = [0] * 31
        dp[0] = 1
 
        for i in arr:
            if i == 1:
                one += 1
            elif Solution.map[i] != 0:
                cnt[i] += 1
 
        for i in range(31):
            if cnt[i] == 0:
                continue
            for j in range(1024):
                if j & Solution.map[i]:
                    continue
                dp[j | Solution.map[i]] = (
                    dp[j | Solution.map[i]] + dp[j] * cnt[i]) % Solution.mod
 
        res = 0
        for i in dp:
            res = (res + i) % Solution.mod
        res -= 1
 
        if one != 0:
            pow_val = 1
            m = 2
            while one != 0:
                if one & 1:
                    pow_val = (pow_val * m) % Solution.mod
                m = (m * m) % Solution.mod
                one >>= 1
            res = (res * pow_val) % Solution.mod
 
        return int(res)
 
    # Driver code
    def main(self):
        arr = [1, 2, 3, 4]
        n = len(arr)
 
        # Calculate primes
        Solution.calculatePrimes()
 
        # Create an instance of the class
        solution = Solution()
 
        # Function call
        result = solution.goodSubsets(arr, n)
 
        print(result)
 
 
# Create an instance of the Solution class
solution = Solution()
 
# Call the main function
solution.main()
 
# This code is contributed by shivamgupta0987654321


C#




// c# code for above approach
using System;
 
class Program {
    const int mod = 1000000007;
 
    static int[] map_ = new int[31];
 
    // Function to calculate power
    static long Pow(int n)
    {
        long res = 1;
        long m = 2;
        while (n != 0) {
            if ((n & 1) == 1)
                res = (res * m) % mod;
            m = (m * m) % mod;
            n >>= 1;
        }
        return res;
    }
 
    // Check for prime value
    static void CheckPrimeVal()
    {
        int[] prime
            = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 };
        for (int i = 2; i <= 30; ++i) {
            // If num is a multiple of
            // 4/9/25, adding it to any
            // subset will make it bad
            if (i % 4 == 0 || i % 9 == 0 || i == 25)
                continue;
            int mask = 0;
            for (int j = 0; j < 10; ++j) {
                if (i % prime[j] == 0)
                    mask |= 1 << j;
            }
            map_[i] = mask;
        }
    }
 
    static int GoodSubsets(int[] arr, int n)
    {
        int one = 0;
        // dp[set_of_primes] represents
        // the number of times set_of_primes
        // can be formed (set_of_primes ===
        // mask) Since there are 10 possible
        // prime numbers, there are 2^10
        // possible set_of_primes
        int[] dp = new int[1024];
        int[] cnt = new int[31];
        dp[0] = 1;
        for (int i = 0; i < n; i++) {
            if (arr[i] == 1)
                one++;
            else if (map_[arr[i]] != 0)
                cnt[arr[i]]++;
        }
        for (int i = 0; i < 31; ++i) {
            if (cnt[i] == 0)
                continue;
            for (int j = 0; j < 1024; ++j) {
                if ((j & map_[i]) != 0)
                    continue;
                dp[j | map_[i]]
                    = (dp[j | map_[i]] + dp[j] * cnt[i])
                      % mod;
            }
        }
        long res = 0;
        foreach(int i in dp) res = (res + i) % mod;
        res--;
        if (one != 0)
            res = (res * Pow(one)) % mod;
        return (int)res;
    }
 
    // Driver code
    static void Main(string[] args)
    {
        int[] arr = { 1, 2, 3, 4 };
        int n = arr.Length;
 
        CheckPrimeVal();
        // Function call
        Console.WriteLine(GoodSubsets(arr, n));
    }
}


Javascript




const mod = 1000000007;
const map_ = new Array(31).fill(0);
 
// Function to calculate power
function pow(n) {
  let res = 1;
  let m = 2;
  while (n !== 0) {
    if ((n & 1) === 1) {
      res = (res * m) % mod;
    }
    m = (m * m) % mod;
    n >>= 1;
  }
  return res;
}
 
// Check for prime value
function check_prime_val() {
  const prime = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29];
  for (let i = 2; i <= 30; ++i) {
   
      // If num is a multiple of
    // 4/9/25, adding it to any
   // subset will make it bad
    if (i % 4 === 0 || i % 9 === 0 || i === 25) {
      continue;
    }
    let mask = 0;
    for (let j = 0; j < 10; ++j) {
      if (i % prime[j] === 0) {
        mask |= 1 << j;
      }
    }
    map_[i] = mask;
  }
}
 
function goodSubsets(arr, n) {
  let one = 0;
   
  // dp[set_of_primes] represents
  // the number of times set_of_primes
  // can be formed (set_of_primes ===
  // mask) Since there are 10 possible
  // prime numbers, there are 2^10
  // possible set_of_primes
  const dp = new Array(1024).fill(0);
  const cnt = new Array(31).fill(0);
  dp[0] = 1;
  for (let i = 0; i < n; i++) {
    if (arr[i] === 1) {
      one++;
    } else if (map_[arr[i]] !== 0) {
      cnt[arr[i]]++;
    }
  }
  for (let i = 0; i < 31; ++i) {
    if (cnt[i] === 0) {
      continue;
    }
    for (let j = 0; j < 1024; ++j) {
      if ((j & map_[i]) !== 0) {
        continue;
      }
      dp[j | map_[i]] = (dp[j | map_[i]] + dp[j] * cnt[i]) % mod;
    }
  }
  let res = 0;
  for (let i of dp) {
    res = (res + i) % mod;
  }
  res--;
  if (one !== 0) {
    res = (res * pow(one)) % mod;
  }
  return res;
}
 
// Driver code
const arr = [1, 2, 3, 4];
const n = arr.length;
check_prime_val();
 
console.log(goodSubsets(arr, n));


Output

6







Time Complexity: O(N*logN)
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments