Given a range [low, high], both inclusive, and an integer K, the task is to select K numbers from the range(a number can be chosen multiple times) such that the sum of those K numbers is even. Print the number of all such permutations.
Examples:
Input: low = 4, high = 5, k = 3
Output: 4
Explanation:
There are 4 valid permutation. They are {4, 4, 4}, {4, 5, 5}, {5, 4, 5} and {5, 5, 4} which sum up to an even number.Input: low = 1, high = 10, k = 2
Output: 50
Explanation:
There are 50 valid permutations. They are {1, 1}, {1, 3}, .. {1, 9} {2, 2}, {2, 4}, …, {2, 10}, …, {10, 2}, {10, 4}, … {10, 10}.
These 50 permutations, each sum up to an even number.
Naive Approach: The idea is to find all subset of size K such that the sum of the subset is even and also calculate permutation for each required subset.
Time Complexity: O(K * (2K))
Auxiliary Space: O(K)
Efficient Approach: The idea is to use the fact that the sum of two even and odd numbers is always even. Follow the steps below to solve the problem:
- Find the total count of even and odd numbers in the given range [low, high].
- Initialize variable even_sum = 1 and odd_sum = 0 to store way to get even sum and odd sum respectively.
- Iterate a loop K times and store the previous even sum as prev_even = even_sum and the previous odd sum as prev_odd = odd_sum where even_sum = (prev_even*even_count) + (prev_odd*odd_count) and odd_sum = (prev_even*odd_count) + (prev_odd*even_count).
- Print the even_sum at the end as there is a count for the odd sum because the previous odd_sum will contribute to the next even_sum.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include<bits/stdc++.h> using namespace std; // Function to return the number // of all permutations such that // sum of K numbers in range is even int countEvenSum( int low, int high, int k) { // Find total count of even and // odd number in given range int even_count = high / 2 - (low - 1) / 2; int odd_count = (high + 1) / 2 - low / 2; long even_sum = 1; long odd_sum = 0; // Iterate loop k times and update // even_sum & odd_sum using // previous values for ( int i = 0; i < k; i++) { // Update the prev_even and // odd_sum long prev_even = even_sum; long prev_odd = odd_sum; // Even sum even_sum = (prev_even * even_count) + (prev_odd * odd_count); // Odd sum odd_sum = (prev_even * odd_count) + (prev_odd * even_count); } // Return even_sum cout << (even_sum); } // Driver Code int main() { // Given ranges int low = 4; int high = 5; // Length of permutation int K = 3; // Function call countEvenSum(low, high, K); } // This code is contributed by Stream_Cipher |
Java
// Java program for the above approach import java.util.*; class GFG { // Function to return the number // of all permutations such that // sum of K numbers in range is even public static void countEvenSum( int low, int high, int k) { // Find total count of even and // odd number in given range int even_count = high / 2 - (low - 1 ) / 2 ; int odd_count = (high + 1 ) / 2 - low / 2 ; long even_sum = 1 ; long odd_sum = 0 ; // Iterate loop k times and update // even_sum & odd_sum using // previous values for ( int i = 0 ; i < k; i++) { // Update the prev_even and // odd_sum long prev_even = even_sum; long prev_odd = odd_sum; // Even sum even_sum = (prev_even * even_count) + (prev_odd * odd_count); // Odd sum odd_sum = (prev_even * odd_count) + (prev_odd * even_count); } // Return even_sum System.out.println(even_sum); } // Driver Code public static void main(String[] args) { // Given ranges int low = 4 ; int high = 5 ; // Length of permutation int K = 3 ; // Function call countEvenSum(low, high, K); } } |
Python3
# Python3 program for the above approach # Function to return the number # of all permutations such that # sum of K numbers in range is even def countEvenSum(low, high, k): # Find total count of even and # odd number in given range even_count = high / 2 - (low - 1 ) / 2 odd_count = (high + 1 ) / 2 - low / 2 even_sum = 1 odd_sum = 0 # Iterate loop k times and update # even_sum & odd_sum using # previous values for i in range ( 0 , k): # Update the prev_even and # odd_sum prev_even = even_sum prev_odd = odd_sum # Even sum even_sum = ((prev_even * even_count) + (prev_odd * odd_count)) # Odd sum odd_sum = ((prev_even * odd_count) + (prev_odd * even_count)) # Return even_sum print ( int (even_sum)) # Driver Code # Given ranges low = 4 ; high = 5 ; # Length of permutation K = 3 ; # Function call countEvenSum(low, high, K); # This code is contributed by Stream_Cipher |
C#
// C# program for the above approach using System; class GFG{ // Function to return the number // of all permutations such that // sum of K numbers in range is even public static void countEvenSum( int low, int high, int k) { // Find total count of even and // odd number in given range int even_count = high / 2 - (low - 1) / 2; int odd_count = (high + 1) / 2 - low / 2; long even_sum = 1; long odd_sum = 0; // Iterate loop k times and update // even_sum & odd_sum using // previous values for ( int i = 0; i < k; i++) { // Update the prev_even and // odd_sum long prev_even = even_sum; long prev_odd = odd_sum; // Even sum even_sum = (prev_even * even_count) + (prev_odd * odd_count); // Odd sum odd_sum = (prev_even * odd_count) + (prev_odd * even_count); } // Return even_sum Console.WriteLine(even_sum); } // Driver Code public static void Main(String[] args) { // Given ranges int low = 4; int high = 5; // Length of permutation int K = 3; // Function call countEvenSum(low, high, K); } } // This code is contributed by amal kumar choubey |
Javascript
<script> // JavaScript program for the above approach // Function to return the number // of all permutations such that // sum of K numbers in range is even function countEvenSum(low, high, k) { // Find total count of even and // odd number in given range let even_count = high / 2 - (low - 1) / 2; let odd_count = (high + 1) / 2 - low / 2; let even_sum = 1; let odd_sum = 0; // Iterate loop k times and update // even_sum & odd_sum using // previous values for (let i = 0; i < k; i++) { // Update the prev_even and // odd_sum let prev_even = even_sum; let prev_odd = odd_sum; // Even sum even_sum = (prev_even * even_count) + (prev_odd * odd_count); // Odd sum odd_sum = (prev_even * odd_count) + (prev_odd * even_count); } // Return even_sum document.write(even_sum); } // Driver Code // Given ranges let low = 4; let high = 5; // Length of permutation let K = 3; // Function call countEvenSum(low, high, K); </script> |
4
Time Complexity: O(K)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!