Saturday, September 21, 2024
Google search engine
HomeLanguagesDynamic ProgrammingCount of N-digit numbers with absolute difference of adjacent digits not exceeding...

Count of N-digit numbers with absolute difference of adjacent digits not exceeding K | Set 2

Given two integers N and K, the task is to find the count of N-digit numbers such that the absolute difference of adjacent digits in the number is not greater than K.
Examples: 
 

Input: N = 2, K = 1 
Output: 26 
Explanation: The numbers are 10, 11, 12, 21, 22, 23, 32, 33, 34, 43, 44, 45, 54, 55, 56, 65, 66, 67, 76, 77, 78, 87, 88, 89, 98, 99
Input: N = 3, K = 2 
Output: 188

Naive Approach and Dynamic Programming Approach: Refer to Count of N-digit numbers with absolute difference of adjacent digits not exceeding K for the simplest solution and the dynamic programming approach that requires O(N) auxiliary space.
Space-Efficient Approach: 
Follow the steps below to optimize the above approach: 
 

  • In the above approach, a 2D array dp[][] is initialized where dp[i][j] stores the count of numbers having i digits and ending with j.
  • It can be observed that the answer for any length i depends only on the count generated for i – 1. So, instead of a 2D array, initialize an array dp[] of size of all possible digits, and for every i upto N, dp[j] stores count of such numbers of length i ending with digit j.
  • Initialize another array next[] of size of all possible digits.
  • Since the count of single-digit numbers ending with a value j is always 1, fill dp[] with 1 at all indices initially.
  • Iterate over the range [2, N], and for every value in the range i, check if the last digit is j, then the allowed digits for this place are in the range (max(0, j-k), min(9, j+k)). Perform a range update: 
     

next[l] = next[l] + dp[j] 
next[r + 1] = next[r + 1] – dp[j] 
where l and r are max(0, j – k) and min(9, j + k) respectively.

  • Once the above step is completed for a particular value of i, compute prefix sum of next[] and update dp[] with the values of next[].

Below is the implementation of the above approach:
 

C




// C program to implement the above approach
#include <stdio.h>
 
// Function to find maximum between two numbers
int max(int num1, int num2)
{
    return (num1 > num2 ) ? num1 : num2;
}
 
// Function to find minimum between two numbers
int min(int num1, int num2)
{
    return (num1 > num2 ) ? num2 : num1;
}
 
// Function to return the count
// of such numbers
int getCount(int n, int k)
{
     
    // For 1-digit numbers, the count
    // is 10 irrespective of K
    if (n == 1)
        return 10;
 
    // dp[j] stores the number
    // of such i-digit numbers
    // ending with j
    int dp[11] = {0};
 
    // Stores the results of length i
    int next[11] = {0};
         
    // Initialize count for
    // 1-digit numbers
    for(int i = 1; i <= 9; i++)
        dp[i] = 1;
 
    // Compute values for count of
    // digits greater than 1
    for(int i = 2; i <= n; i++)
    {
        for(int j = 0; j <= 9; j++)
        {
 
            // Find the range of allowed
            // numbers if last digit is j
            int l = max(0, (j - k));
            int r = min(9, (j + k));
 
            // Perform Range update
            next[l] += dp[j];
            next[r + 1] -= dp[j];
        }
 
        // Prefix sum to find actual count
        // of i-digit numbers ending with j
        for(int j = 1; j <= 9; j++)
            next[j] += next[j - 1];
 
        // Update dp[]
        for(int j = 0; j < 10; j++)
        {
            dp[j] = next[j];
            next[j] = 0;
        }
    }
 
    // Stores the final answer
    int count = 0;
    for(int i = 0; i <= 9; i++)
        count += dp[i];
 
    // Return the final answer
    return count;
}
 
// Driver Code
int main()
{
    int n = 2, k = 1;
    printf("%d", getCount(n, k));
}
 
// This code is contributed by piyush3010.


C++




// C++ Program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find maximum between two numbers
int max(int num1, int num2)
{
    return (num1 > num2 ) ? num1 : num2;
}
  
// Function to find minimum between two numbers
int min(int num1, int num2)
{
    return (num1 > num2 ) ? num2 : num1;
}
  
// Function to return the count
// of such numbers
int getCount(int n, int k)
{
      
    // For 1-digit numbers, the count
    // is 10 irrespective of K
    if (n == 1)
        return 10;
  
    // dp[j] stores the number
    // of such i-digit numbers
    // ending with j
    int dp[11] = {0};
  
    // Stores the results of length i
    int next[11] = {0};
          
    // Initialize count for
    // 1-digit numbers
    for(int i = 1; i <= 9; i++)
        dp[i] = 1;
  
    // Compute values for count of
    // digits greater than 1
    for(int i = 2; i <= n; i++)
    {
        for(int j = 0; j <= 9; j++)
        {
  
            // Find the range of allowed
            // numbers if last digit is j
            int l = max(0, (j - k));
            int r = min(9, (j + k));
  
            // Perform Range update
            next[l] += dp[j];
            next[r + 1] -= dp[j];
        }
  
        // Prefix sum to find actual count
        // of i-digit numbers ending with j
        for(int j = 1; j <= 9; j++)
            next[j] += next[j - 1];
  
        // Update dp[]
        for(int j = 0; j < 10; j++)
        {
            dp[j] = next[j];
            next[j] = 0;
        }
    }
  
    // Stores the final answer
    int count = 0;
    for(int i = 0; i <= 9; i++)
        count += dp[i];
  
    // Return the final answer
    return count;
}
 
// Driver Code
int main()
{
    int n = 2, k = 1;
    cout <<  getCount(n, k);
 
    return 0;
}


Java




// Java Program to implement
// the above approach
import java.util.*;
class GFG {
 
    // Function to return the count
    // of such numbers
    public static long getCount(
        int n, int k)
    {
        // For 1-digit numbers, the count
        // is 10 irrespective of K
        if (n == 1)
            return 10;
 
        // dp[j] stores the number
        // of such i-digit numbers
        // ending with j
        long dp[] = new long[11];
 
        // Stores the results of length i
        long next[] = new long[11];
 
        // Initialize count for
        // 1-digit numbers
        for (int i = 1; i <= 9; i++)
            dp[i] = 1;
 
        // Compute values for count of
        // digits greater than 1
        for (int i = 2; i <= n; i++) {
            for (int j = 0; j <= 9; j++) {
 
                // Find the range of allowed
                // numbers if last digit is j
                int l = Math.max(0, j - k);
                int r = Math.min(9, j + k);
 
                // Perform Range update
                next[l] += dp[j];
                next[r + 1] -= dp[j];
            }
 
            // Prefix sum to find actual count
            // of i-digit numbers ending with j
            for (int j = 1; j <= 9; j++)
                next[j] += next[j - 1];
 
            // Update dp[]
            for (int j = 0; j < 10; j++) {
                dp[j] = next[j];
                next[j] = 0;
            }
        }
 
        // Stores the final answer
        long count = 0;
        for (int i = 0; i <= 9; i++)
            count += dp[i];
 
        // Return the final answer
        return count;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int n = 2, k = 1;
        System.out.println(getCount(n, k));
    }
}


Python3




# Python3 program to implement
# the above approach
 
# Function to return the count
# of such numbers
def getCount(n, K):
 
    # For 1-digit numbers, the count
    # is 10 irrespective of K
    if(n == 1):
        return 10
 
    # dp[j] stores the number
    # of such i-digit numbers
    # ending with j
    dp = [0] * 11
 
    # Stores the results of length i
    next = [0] * 11
 
    # Initialize count for
    # 1-digit numbers
    for i in range(1, 9 + 1):
        dp[i] = 1
 
    # Compute values for count of
    # digits greater than 1
    for i in range(2, n + 1):
        for j in range(9 + 1):
 
            # Find the range of allowed
            # numbers if last digit is j
            l = max(0, j - k)
            r = min(9, j + k)
 
            # Perform Range update
            next[l] += dp[j]
            next[r + 1] -= dp[j]
 
        # Prefix sum to find actual count
        # of i-digit numbers ending with j
        for j in range(1, 9 + 1):
            next[j] += next[j - 1]
 
        # Update dp[]
        for j in range(10):
            dp[j] = next[j]
            next[j] = 0
 
    # Stores the final answer
    count = 0
    for i in range(9 + 1):
        count += dp[i]
 
    # Return the final answer
    return count
 
# Driver code
if __name__ == '__main__':
 
    n = 2
    k = 1
     
    print(getCount(n, k))
 
# This code is contributed by Shivam Singh


C#




// C# program to implement
// the above approach
using System;
 
class GFG{
 
// Function to return the count
// of such numbers
public static long getCount(int n, int k)
{
     
    // For 1-digit numbers, the count
    // is 10 irrespective of K
    if (n == 1)
        return 10;
 
    // dp[j] stores the number
    // of such i-digit numbers
    // ending with j
    long []dp = new long[11];
 
    // Stores the results of length i
    long []next = new long[11];
 
    // Initialize count for
    // 1-digit numbers
    for(int i = 1; i <= 9; i++)
        dp[i] = 1;
 
    // Compute values for count of
    // digits greater than 1
    for(int i = 2; i <= n; i++)
    {
        for(int j = 0; j <= 9; j++)
        {
             
            // Find the range of allowed
            // numbers if last digit is j
            int l = Math.Max(0, j - k);
            int r = Math.Min(9, j + k);
 
            // Perform Range update
            next[l] += dp[j];
            next[r + 1] -= dp[j];
        }
 
        // Prefix sum to find actual count
        // of i-digit numbers ending with j
        for(int j = 1; j <= 9; j++)
            next[j] += next[j - 1];
 
        // Update []dp
        for(int j = 0; j < 10; j++)
        {
            dp[j] = next[j];
            next[j] = 0;
        }
    }
 
    // Stores the readonly answer
    long count = 0;
    for(int i = 0; i <= 9; i++)
        count += dp[i];
 
    // Return the readonly answer
    return count;
}
 
// Driver Code
public static void Main(String[] args)
{
    int n = 2, k = 1;
    Console.WriteLine(getCount(n, k));
}
}
 
// This code is contributed by amal kumar choubey


Javascript




<script>
 
// Javascript program to implement the above approach
 
// Function to find maximum between two numbers
function max(num1, num2)
{
    return (num1 > num2 ) ? num1 : num2;
}
 
// Function to find minimum between two numbers
function min(num1, num2)
{
    return (num1 > num2 ) ? num2 : num1;
}
 
// Function to return the count
// of such numbers
function getCount(n, k)
{
     
    // For 1-digit numbers, the count
    // is 10 irrespective of K
    if (n == 1)
        return 10;
 
    // dp[j] stores the number
    // of such i-digit numbers
    // ending with j
    var dp = Array(11).fill(0);
 
    // Stores the results of length i
    var next = Array(11).fill(0);
         
    // Initialize count for
    // 1-digit numbers
    for(var i = 1; i <= 9; i++)
        dp[i] = 1;
 
    // Compute values for count of
    // digits greater than 1
    for(var i = 2; i <= n; i++)
    {
        for(var j = 0; j <= 9; j++)
        {
 
            // Find the range of allowed
            // numbers if last digit is j
            var l = Math.max(0, (j - k));
            var r = Math.min(9, (j + k));
 
            // Perform Range update
            next[l] += dp[j];
            next[r + 1] -= dp[j];
        }
 
        // Prefix sum to find actual count
        // of i-digit numbers ending with j
        for(var j = 1; j <= 9; j++)
            next[j] += next[j - 1];
 
        // Update dp[]
        for(var j = 0; j < 10; j++)
        {
            dp[j] = next[j];
            next[j] = 0;
        }
    }
 
    // Stores the final answer
    var count = 0;
    for(var i = 0; i <= 9; i++)
        count += dp[i];
 
    // Return the final answer
    return count;
}
 
// Driver Code
var n = 2, k = 1;
document.write( getCount(n, k));
 
// This code is contributed by chinmoy1997pal.
</script>   


Output: 

26

 

Time Complexity: O(N) 
Auxiliary Space: O(1)
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments