Tuesday, November 19, 2024
Google search engine
HomeLanguagesDynamic ProgrammingChoose maximum weight with given weight and value ratio

Choose maximum weight with given weight and value ratio

Given weights and values of n items and a value k. We need to choose a subset of these items in such a way that ratio of the sum of weight and sum of values of chosen items is K and sum of weight is maximum among all possible subset choices.
 

Input : weight[] = [4, 8, 9]
        values[] = [2, 4, 6]
        K = 2
Output : 12
We can choose only first and second item only, 
because (4 + 8) / (2 + 4) = 2 which is equal to K
we can't include third item with weight 9 because 
then ratio condition won't be satisfied so result 
will be (4 + 8) = 12

 

We can solve this problem using dynamic programming. We can make a 2 state dp where dp(i, j) will store maximum possible sum of weights under given conditions when total items are N and required ratio is K. 
Now in two states of dp, we will store the last item chosen and the difference between sum of weight and sum of values. We will multiply item values by K so that second state of dp will actually store (sum of weight – K*(sum of values)) for chosen items. Now we can see that our answer will be stored in dp(N-1, 0) because as last item is (N-1)th so all items are being considered and difference between sum of weight and K*(sum of values) is 0 that means sum of weight and sum of values has a ratio K. 
After defining above dp state we can write transition among states simply as shown below, 
 

dp(last, diff) = max (dp(last - 1, diff),    
                 dp(last-1, diff + wt[last] - val[last]*K))

dp(last – 1, diff) represents the condition when current
                   item is not chosen and 
dp(last – 1, diff + wt[last] – val[last] * K)) represents 
the condition when current item is chosen so difference 
is updated with weight and value of current item.

In below code a top-down approach is used for solving this dynamic programming and for storing dp states a map is used because the difference can be negative also and the 2D array can create problem in that case and special care need to be taken.
 

C++




// C++ program to choose item with maximum
// sum of weight under given constraint
#include <bits/stdc++.h>
using namespace std;
 
// memoized recursive method to return maximum
// weight with K as ratio of weight and values
int maxWeightRec(int wt[], int val[], int K,
                  map<pair<int, int>, int>& mp,
                            int last, int diff)
{
    //  base cases : if no item is remaining
    if (last == -1)
    {
        if (diff == 0)
            return 0;
        else
            return INT_MIN;
    }
 
    // first make pair with last chosen item and
    // difference between weight and values
    pair<int, int> tmp = make_pair(last, diff);
    if (mp.find(tmp) != mp.end())
        return mp[tmp];
 
    /*  choose maximum value from following two
        1) not selecting the current item and calling
           recursively
        2) selection current item, including the weight
           and updating the difference before calling
           recursively */
    mp[tmp] = max(maxWeightRec(wt, val, K, mp, last - 1, diff),
                   wt[last] + maxWeightRec(wt, val, K, mp,
                   last - 1, diff + wt[last] - val[last] * K));
 
    return mp[tmp];
}
 
// method returns maximum sum of weight with K
// as ration of sum of weight and their values
int maxWeight(int wt[], int val[], int K, int N)
{
    map<pair<int, int>, int> mp;
    return maxWeightRec(wt, val, K, mp, N - 1, 0);
}
 
//  Driver code to test above methods
int main()
{
    int wt[] = {4, 8, 9};
    int val[] = {2, 4, 6};
    int N = sizeof(wt) / sizeof(int);
    int K = 2;
 
    cout << maxWeight(wt, val, K, N);
    return 0;
}


Java




// Java program to choose item with maximum
// sum of weight under given constraint
 
import java.awt.Point;
import java.util.HashMap;
 
class Test
{
    // memoized recursive method to return maximum
    // weight with K as ratio of weight and values
    static int maxWeightRec(int wt[], int val[], int K,
                      HashMap<Point, Integer> hm,
                                int last, int diff)
    {
        //  base cases : if no item is remaining
        if (last == -1)
        {
            if (diff == 0)
                return 0;
            else
                return Integer.MIN_VALUE;
        }
      
        // first make pair with last chosen item and
        // difference between weight and values
        Point tmp = new Point(last, diff);
        if (hm.containsKey(tmp))
            return hm.get(tmp);
      
        /*  choose maximum value from following two
            1) not selecting the current item and calling
               recursively
            2) selection current item, including the weight
               and updating the difference before calling
               recursively */
       hm.put(tmp,Math.max(maxWeightRec(wt, val, K, hm, last - 1, diff),
                       wt[last] + maxWeightRec(wt, val, K, hm,
                       last - 1, diff + wt[last] - val[last] * K)));
      
        return hm.get(tmp);
    }
      
    // method returns maximum sum of weight with K
    // as ration of sum of weight and their values
    static int maxWeight(int wt[], int val[], int K, int N)
    {
        HashMap<Point, Integer> hm = new HashMap<>();
        return maxWeightRec(wt, val, K, hm, N - 1, 0);
    }
     
    // Driver method
    public static void main(String args[])
    {
        int wt[] = {4, 8, 9};
        int val[] = {2, 4, 6};
         
        int K = 2;
      
        System.out.println(maxWeight(wt, val, K, wt.length));
    }
}
// This code is contributed by Gaurav Miglani


Python3




# Python3 program to choose item with maximum
# sum of weight under given constraint
INT_MIN = -9999999999
 
def maxWeightRec(wt, val, K, mp, last, diff):
     
    # memoized recursive method to return maximum
    # weight with K as ratio of weight and values
 
    # base cases : if no item is remaining
    if last == -1:
        if diff == 0:
            return 0
        else:
            return INT_MIN
 
    # first make pair with last chosen item and
    # difference between weight and values
    tmp = (last, diff)
    if tmp in mp:
        return mp[tmp]
 
    # choose maximum value from following two
    # 1) not selecting the current item and
    #    calling recursively
    # 2) selection current item, including
    #    the weight and updating the difference
    #    before calling recursively
 
    mp[tmp] = max(maxWeightRec(wt, val, K, mp,
                               last - 1, diff), wt[last] +
                  maxWeightRec(wt, val, K, mp,
                               last - 1, diff +
                               wt[last] - val[last] * K))
    return mp[tmp]
 
def maxWeight(wt, val, K, N):
     
    # method returns maximum sum of weight with K
    # as ration of sum of weight and their values
    return maxWeightRec(wt, val, K, {}, N - 1, 0)
 
# Driver code
if __name__ == "__main__":
    wt = [4, 8, 9]
    val = [2, 4, 6]
    N = len(wt)
    K = 2
    print(maxWeight(wt, val, K, N))
 
# This code is contributed
# by vibhu4agarwal


C#




// C# code for the above approach
using System;
using System.Collections.Generic;
 
class GFG
{
   
  // memoized recursive method to return maximum
  // weight with K as ratio of weight and values
  static int maxWeightRec(int[] wt, int[] val, int K,
                          Dictionary<Tuple<int, int>, int> hm,
                          int last, int diff)
  {
     
    //  base cases : if no item is remaining
    if (last == -1)
    {
      if (diff == 0)
        return 0;
      else
        return int.MinValue;
    }
 
    // first make pair with last chosen item and
    // difference between weight and values
    Tuple<int, int> tmp = new Tuple<int, int>(last, diff);
    if (hm.ContainsKey(tmp))
      return hm[tmp];
 
    /*  choose maximum value from following two
            1) not selecting the current item and calling
               recursively
            2) selection current item, including the weight
               and updating the difference before calling
               recursively */
    hm[tmp] = Math.Max(maxWeightRec(wt, val, K, hm, last - 1, diff),
                       wt[last] + maxWeightRec(wt, val, K,
                                               hm, last - 1, diff + wt[last] - val[last] * K));
 
    return hm[tmp];
  }
 
  // method returns maximum sum of weight with K
  // as ration of sum of weight and their values
  static int maxWeight(int[] wt, int[] val, int K, int N)
  {
    Dictionary<Tuple<int, int>, int> hm = new Dictionary<Tuple<int, int>, int>();
    return maxWeightRec(wt, val, K, hm, N - 1, 0);
  }
 
  // Driver method
  public static void Main(string[] args)
  {
    int[] wt = {4, 8, 9};
    int[] val = {2, 4, 6};
 
    int K = 2;
 
    Console.WriteLine(maxWeight(wt, val, K, wt.Length));
  }
}
 
// This code is contributed by lokeshpotta20.


Javascript




<script>
 
// JavaScript program to choose item with maximum
// sum of weight under given constraint
const INT_MIN = -9999999999
 
function maxWeightRec(wt, val, K, mp, last, diff){
     
    // memoized recursive method to return maximum
    // weight with K as ratio of weight and values
 
    // base cases : if no item is remaining
    if(last == -1){
        if(diff == 0)
            return 0
        else
            return INT_MIN
    }
 
    // first make pair with last chosen item and
    // difference between weight and values
    let tmp = [last, diff]
    if(mp.has(tmp))
        return mp.get(tmp)
 
    // choose maximum value from following two
    // 1) not selecting the current item and
    // calling recursively
    // 2) selection current item, including
    // the weight and updating the difference
    // before calling recursively
 
    mp.set(tmp, Math.max(maxWeightRec(wt, val, K, mp,
                            last - 1, diff), wt[last] +
                maxWeightRec(wt, val, K, mp,
                            last - 1, diff +
                            wt[last] - val[last] * K)))
    return mp.get(tmp)
}
 
function maxWeight(wt, val, K, N){
     
    // method returns maximum sum of weight with K
    // as ration of sum of weight and their values
    return maxWeightRec(wt, val, K, new Map(), N - 1, 0)
}
 
// Driver code
 
let wt = [4, 8, 9]
let val = [2, 4, 6]
let N = wt.length
let K = 2
document.write(maxWeight(wt, val, K, N),"</br>")
 
// This code is contributed by shinjanpatra
 
</script>


Output: 
 

12

The time complexity of the above code is O(N2), where N is the size of the array. This is because the map stores the results of the subproblems, which is done using a recursive approach.

The space complexity is also O(N2) as the map is used to store the intermediate results.

This article is contributed by Utkarsh Trivedi. If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments