Tensorflow.js is an open-source library developed by Google for running machine learning models and deep learning neural networks in the browser or node environment.
The tf.train.rmsprop() function is used to create a tf.RMSPropOptimizer that uses RMSProp gradient decent algorithm. The implementation of RMSProp optimizer is not the centered version of RMSProp and it uses plain momentum.
Syntax:
tf.train.rmsprop(learningRate, decay, momentum, epsilon, centered)
Parameters:
- learningRate (number): It specifies the learning rate which will be used by adadelta gradient descent algorithm.
- decay (number): It specifies the decay rate of each gradient.
- momentum (number): It specifies the momentum which will be used by rmsprop gradient descent algorithm.
- epsilon: It specifies a constant small value which is used to avoid zero denominator.
- centered (boolean): It specifies whether the gradients are normalised by the estimated gradient variance or not.
Return value: It returns a tf.RMSPropOptimizer
Example 1: Fit a function f=(a*x+y) using RMSProp optimizer, by learning coefficients a and b.
Javascript
// Importing tensorflow import * as tf from "@tensorflow/tfjs" const xs = tf.tensor1d([0, 1, 2]); const ys = tf.tensor1d([1.1, 5.9, 16.8]); // Choosing random coefficients. const a = tf.scalar(Math.random()).variable(); const b = tf.scalar(Math.random()).variable(); // Defining function f = (a*x + b). We will use // optimizer to fit f const f = x => a.mul(x).add(b); const loss = (pred, label) => pred.sub(label).square().mean(); // Define rate which will be used by rmsprop algorithm const learningRate = 0.01; // Create optimizer const optimizer = tf.train.rmsprop(learningRate); // Train the model. for (let i = 0; i < 8; i++) { optimizer.minimize(() => loss(f(xs), ys)); } // Make predictions. console.log( `a: ${a.dataSync()}, b: ${b.dataSync()}}`); const preds = f(xs).dataSync(); preds.forEach((pred, i) => { console.log(`x: ${i}, pred: ${pred}`); }); |
Output:
a:0.9164762496948242, b: 1.0887205600738525} x: 0, pred: 1.0887205600738525 x: 1, pred: 2.0051968097686768 x: 2, pred: 2.921673059463501
Example 2: Fit a quadratic equation using RMSProp optimizer, by learning coefficients a, b and c. Optimizer will have following configuration:
- learningRate = 0.01
- decay = 0.1
- momentum = 1
- epsilon = 0.5
- centered = true
Javascript
// Importing tensorflow import * as tf from "@tensorflow/tfjs" const xs = tf.tensor1d([0, 1, 2, 3]); const ys = tf.tensor1d([1.1, 5.9, 16.8, 33.9]); // Choosing random coefficients const a = tf.scalar(Math.random()).variable(); const b = tf.scalar(Math.random()).variable(); const c = tf.scalar(Math.random()).variable(); // Defining function f = (a*x^2 + b*x + c) const f = x => a.mul(x.square()).add(b.mul(x)).add(c); const loss = (pred, label) => pred.sub(label).square().mean(); // Setting configurations for our optimizer const learningRate = 0.01; const decay = 0.1; const momentum = 1; const epsilon = 0.5; const centered = true ; // Create the optimizer const optimizer = tf.train.rmsprop(learningRate, decay, momentum, epsilon, centered); // Train the model. for (let i = 0; i < 8; i++) { optimizer.minimize(() => loss(f(xs), ys)); } // Make predictions. console.log(`a: ${a.dataSync()}, b: ${b.dataSync()}, c: ${c.dataSync()}`); const preds = f(xs).dataSync(); preds.forEach((pred, i) => { console.log(`x: ${i}, pred: ${pred}`); }); |
Output:
a: 3.918823003768921, b: 3.333444833755493, c: 6.297145843505859 x: 0, pred: 6.297145843505859 x: 1, pred: 13.549413681030273 x: 2, pred: 28.639328002929688 x: 3, pred: 51.56688690185547
Reference: https://js.tensorflow.org/api/1.0.0/#train.rmsprop