Tensorflow.js is an open-source library developed by Google for running machine learning models and deep learning neural networks in the browser or node environment. It also helps the developers to develop ML models in JavaScript language and can use ML directly in the browser or in Node.js.
The tf.initializers.truncatedNormal() function produces random values initialized to a truncated normal distribution.
Syntax:
tf.initializers.truncatedNormal(arguments)
Parameters: It takes an object as arguments that contain the any of key values listed below:
- mean: It is the mean of the random values to be generated.
- stddev: It is the standard deviation of the random values to be generated.
- seed: It is the random number generator seed.
Returns value: It returns tf.initializers.Initializer
Example 1:
Javascript
// Importing the tensorflow.js library import * as tf from "@tensorflow/tfjs" // Initializing the .initializers.truncatedNormal() // function let geek = tf.initializers.truncatedNormal(13) // Printing gain value console.log(geek); // Printing individual gain value console.log( '\nIndividual values:\n' ); console.log(geek.DEFAULT_MEAN); console.log(geek.DEFAULT_STDDEV); console.log(geek.mean); console.log(geek.stddev); |
Output:
{ "DEFAULT_MEAN": 0, "DEFAULT_STDDEV": 0.05, "mean": 0, "stddev": 0.05 } Individual values: 0 0.05 0 0.05
Example 2:
Javascript
// Importing the tensorflow.Js library import * as tf from "@tensorflow/tfjs // Defining the input value const inputValue = tf.input({shape:[4]}); // Initializing tf.initializers.truncatedNormal() // function const funcValue = tf.initializers.truncatedNormal(11) // Creating dense layer 1 const dense_layer_1 = tf.layers.dense({ units: 4, activation: 'relu' , kernelInitialize: funcValue }); // Creating dense layer 2 const dense_layer_2 = tf.layers.dense({ units: 6, activation: 'softmax' }); // Output const outputValue = dense_layer_2.apply( dense_layer_1.apply(inputValue) ); // Creation the model. const model = tf.model( { inputs: inputValue, outputs: outputValue }); // Predicting the output. model.predict(tf.ones([2, 4])).print(); |
Output:
Tensor [[0.1830122, 0.1198884, 0.1611279, 0.2659391, 0.1296039, 0.1404286], [0.1830122, 0.1198884, 0.1611279, 0.2659391, 0.1296039, 0.1404286]]
Reference: https://js.tensorflow.org/api/3.6.0/#initializers.truncatedNormal