The initializers in Tensorflow.js are used to initialize the starting values of kernel, weights, and biases. The tf.initializers.constant() is initializer function inherited from Initializer base class. This function is used to generate the values initialized to some constant. In this post, we are going to know about tf.initializers.constant() function in Tensorflow.js.
Syntax:
tf.initializers.constant(args)
Parameters: The args object contains the following props.
- values: The value for each element in the variable.
Return Value: It returns the tf.initializers.Initializer.
Example 1: In this example, we are going to see standalone use of tf.initializers.constant() function.
Javascript
// Importing the tensorflow.js library const tf = require( "@tensorflow/tfjs" ) // Use tf.initializers.constant() function var initializer = tf.initializers.constant({ value: 7, }) // Print the value of constant console.log(initializer); |
Output:
Constant { value: 7 }
Example 2: In this example, we are going to use the constant() function in model creation to initialize the kernel.
Javascript
// Importing the tensorflow.js library const tf = require( "@tensorflow/tfjs" ) // Using tf.initializers.constant() function var initializer = tf.initializers.constant({ value: 7, }) // Create model const model = tf.sequential(); // Add layer and initialize the kernel model.add(tf.layers.dense({ units: 3, activation: 'softmax' , kernelInitializer: initializer, inputShape: [2] })); // Print the summary model.summary(); |
Output:
Layer (type) Output shape Param # ================================================================= dense_Dense1 (Dense) [null,3] 9 ================================================================= Total params: 9 Trainable params: 9 Non-trainable params: 0 _________________________________________________________________
Reference: https://js.tensorflow.org/api/latest/#initializers.constant