Monday, November 18, 2024
Google search engine
HomeLanguagesJavascriptTensorflow.js tf.unsortedSegmentSum() Function

Tensorflow.js tf.unsortedSegmentSum() Function

Tensorflow.js is an open-source library that is developed by Google for running machine learning models as well as deep learning neural networks in the browser or node environment.

The .unsortedSegmentSum() function is used to calculate the sum through the parts of a tf.Tensor.

Syntax:  

tf.unsortedSegmentSum(x, segmentIds, numSegments)

Parameters:  

  • x: It is the stated tensor input that is to be added through its parts and it can be of type tf.Tensor, TypedArray, or Array.
  • segmentIds: It is the stated tf.Tensor1D whose order is equivalent to the order of x’s size through the axis. It maps every item of x to a slice. It can be of type tf.Tensor1D, TypedArray, or Array.
  • numSegments: It is the stated number of separate segmentIds, and it is of type number.

Return Value: It returns tf.Tensor object.

Example 1:

Javascript




// Importing the tensorflow.js library
import * as tf from "@tensorflow/tfjs"
  
// Defining tensor input, segmentIds 
// and numSegments 
const y = tf.tensor1d([5, 6, 7, 8]);
const segmIds = tf.tensor1d([3, 1, 2, 0], 'int32');
const numSegm = 4;
  
// Calling tf.unsortedSegmentSum() method
// And printing output
y.unsortedSegmentSum(segmIds, numSegm).print();


Output:

Tensor
    [8, 6, 7, 5]

Example 2:

Javascript




// Importing the tensorflow.js library
import * as tf from "@tensorflow/tfjs"
  
// Calling tf.unsortedSegmentSum() method
var res = tf.unsortedSegmentSum(
    tf.tensor1d([1, 9]), 
    tf.tensor1d([1, 0], 'int32'), 3
);
  
// Printing output
res.print();


Output:

Tensor
    [9, 1, 0]

Reference: https://js.tensorflow.org/api/latest/#unsortedSegmentSum

Whether you’re preparing for your first job interview or aiming to upskill in this ever-evolving tech landscape, neveropen Courses are your key to success. We provide top-quality content at affordable prices, all geared towards accelerating your growth in a time-bound manner. Join the millions we’ve already empowered, and we’re here to do the same for you. Don’t miss out – check it out now!

RELATED ARTICLES

Most Popular

Recent Comments