Monday, November 18, 2024
Google search engine
HomeLanguagesJavascriptTensorflow.js tf.initializers.leCunUniform() Function

Tensorflow.js tf.initializers.leCunUniform() Function

Tensorflow.js is an open-source library developed by Google for running machine learning models and deep learning neural networks in the browser or node environment. It also helps the developers to develop ML models in JavaScript language and can use ML directly in the browser or in Node.js.

The tf.initializers.leCunUniform() function takes samples  from a uniform distribution in the interval [-cap, cap] with cap = sqrt(3 / fanIn). Note that the fanIn is the number of inputs in the tensor weight.

Syntax:

tf.initializers.leCunUniform(arguments).

Parameters:

  • arguments: It is an object that contains seed (a number) which is the random number generator seed/number.

Returns value: It returns tf.initializers.Initializer.

Example 1:

Javascript




// Importing the tensorflow.Js library
import * as tf from "@tensorflow/tfjs"
 
// Initialising the .initializers.leCunUniform() function
console.log(tf.initializers.leCunUniform(4));
 
// Printing individual values from the gain
 
console.log("\nIndividual Values\n");
console.log(tf.initializers.leCunUniform(4).scale);
console.log(tf.initializers.leCunUniform(4).mode);
console.log(tf.initializers.leCunUniform(4).distribution);


Output:

{
  "scale": 1,
  "mode": "fanIn",
  "distribution": "uniform"
}

Individual Values

1
fanIn
uniform

Example 2:

Javascript




// Importing the tensorflow.Js library
import * as tf from "@tensorflow/tfjs"
 
// Defining the input value
let inputValue = tf.input({ shape: [4] });
 
// Initializing tf.initializers.leCunUniform()
// function
let funcValue = tf.initializers.leCunUniform(6)
 
// Creating dense layer 1
let dense_layer_1 = tf.layers.dense({
    units: 3,
    activation: 'relu',
    kernelInitialize: funcValue
});
 
// Creating dense layer 2
let dense_layer_2 = tf.layers.dense({
    units: 6,
    activation: 'softmax'
});
 
// Output Value
let outputValue = dense_layer_2.apply(
    dense_layer_1.apply(inputValue)
);
 
// Creation the model
let model = tf.model({
    inputs: inputValue,
    outputs: outputValue
});
 
// Predicting the output
let finalOutput = model.predict(tf.ones([2, 4]));
finalOutput.print();


Output:

Tensor
    [[0.1853671, 0.1406064, 0.1505066, 0.1183221, 0.2430924, 0.1621054],
     [0.1853671, 0.1406064, 0.1505066, 0.1183221, 0.2430924, 0.1621054]]

Reference: https://js.tensorflow.org/api/latest/#initializers.leCunUniform

Whether you’re preparing for your first job interview or aiming to upskill in this ever-evolving tech landscape, neveropen Courses are your key to success. We provide top-quality content at affordable prices, all geared towards accelerating your growth in a time-bound manner. Join the millions we’ve already empowered, and we’re here to do the same for you. Don’t miss out – check it out now!

RELATED ARTICLES

Most Popular

Recent Comments