It is a replacement for the grade school algorithm for multiplying numbers. of bigger digits. The Karatsuba Algorithm for fast multiplication algorithm using Divide and Conquer developed by Anatolii Alexeevitch Karatsuba in 1960. The first thing that hits the head what is it and why it is designed. Though there are 3 ways to multiply numbers :
- Third-grade school algorithm Method (Standard-way)
- Recursive algorithm Method
- Karatsuba Multiplication Method
Why the Karatsuba algorithm?
The goal of the algorithm is designed because the design space is surprisingly rich. Its time complexity is follows and do not it as time complexity for this is very important and is sometimes do asked in interview questions.
O(n^log2(3)) time (~ O(n^1.585))
Where n is the number of digits of the numbers multiplying. It is discussed by multiplying two big integer numbers to show internal working step by step. The goal is to reduce the space complexity for which the integer numbers terms will be broken down in such a way to x and y are broken into a set of digits as the logic behind it is divide and conquer. If the numbers are smaller there is no need to multiply, standard mutilation of two integers is preferred.
The algorithm is standardized for 4 digits for sake of understanding. One can multiply as many digits taken into sets.
Algorithm Steps:
- Compute starting set (a*c)
- Compute set after starting set may it be ending set (b*d)
- Compute starting set with ending sets
- Subtract values of step 3 from step2 from step1
- Pad up (Add) 4 zeros to the number obtained from Step1, step2 value unchanged, and pad up two zeros to value obtained from step4.
Now let us do propose the above steps and showing it with an illustration prior getting to the implementation part
Illustration:
Input: x = 1234, y = 5678
Processing: As per above inputs x = 1234 y = 5678 a = 12, b = 34 c = 56, d = 78 Step 1: a * c = 172 Step 2: b * d = 2652 Step 3: (a+b)(c+d) = 134 * 36 = 6164 Step 4: 6164 - 2652 - 172 = 2840 Step 5: 1720000 + 2652 + 284000 = 7006652
Output: 7006652
The value obtained from step 5 is in fact the product obtained if standard school multiplication is carried on between these two numbers ‘x’ and ‘y’.
1720000 + 2652 + 284000 = 7006652
Implementation: Note not to grasp the formulas laid down for this algorithm rather understanding it in this way makes its way to better.
Java
/// Java Program to Implement Karatsuba Algorithm // Importing Random class from java.util packahge import java.util.Random; // MAin class class GFG { // Main driver method public static long mult( long x, long y) { // Checking only if input is within range if (x < 10 && y < 10 ) { // Multiplying the inputs entered return x * y; } // Declaring variables in order to // Find length of both integer // numbers x and y int noOneLength = numLength(x); int noTwoLength = numLength(y); // Finding maximum length from both numbers // using math library max function int maxNumLength = Math.max(noOneLength, noTwoLength); // Rounding up the divided Max length Integer halfMaxNumLength = (maxNumLength / 2 ) + (maxNumLength % 2 ); // Multiplier long maxNumLengthTen = ( long )Math.pow( 10 , halfMaxNumLength); // Compute the expressions long a = x / maxNumLengthTen; long b = x % maxNumLengthTen; long c = y / maxNumLengthTen; long d = y % maxNumLengthTen; // Compute all mutilpying variables // needed to get the multiplication long z0 = mult(a, c); long z1 = mult(a + b, c + d); long z2 = mult(b, d); long ans = (z0 * ( long )Math.pow( 10 , halfMaxNumLength * 2 ) + ((z1 - z0 - z2) * ( long )Math.pow( 10 , halfMaxNumLength) + z2)); return ans; } // Method 1 // To calculate length of the number public static int numLength( long n) { int noLen = 0 ; while (n > 0 ) { noLen++; n /= 10 ; } // Returning length of number n return noLen; } // Method 2 // Main driver function public static void main(String[] args) { // Showcasing karatsuba multiplication // Case 1: Big integer lengths long expectedProduct = 1234 * 5678 ; long actualProduct = mult( 1234 , 5678 ); // Printing the expected and corresponding actual product System.out.println( "Expected 1 : " + expectedProduct); System.out.println( "Actual 1 : " + actualProduct + "\n\n" ); assert (expectedProduct == actualProduct); expectedProduct = 102 * 313 ; actualProduct = mult( 102 , 313 ); System.out.println( "Expected 2 : " + expectedProduct); System.out.println( "Actual 2 : " + actualProduct + "\n\n" ); assert (expectedProduct == actualProduct); expectedProduct = 1345 * 63456 ; actualProduct = mult( 1345 , 63456 ); System.out.println( "Expected 3 : " + expectedProduct); System.out.println( "Actual 3 : " + actualProduct + "\n\n" ); assert (expectedProduct == actualProduct); Integer x = null ; Integer y = null ; Integer MAX_VALUE = 10000 ; // Boe creating an object of random class // inside main() method Random r = new Random(); for ( int i = 0 ; i < MAX_VALUE; i++) { x = ( int ) r.nextInt(MAX_VALUE); y = ( int ) r.nextInt(MAX_VALUE); expectedProduct = x * y; if (i == 9999 ) { // Prove assertions catch the bad stuff. expectedProduct = 1 ; } actualProduct = mult(x, y); // Again printing the expected and // corresponding actual product System.out.println( "Expected: " + expectedProduct); System.out.println( "Actual: " + actualProduct + "\n\n" ); assert (expectedProduct == actualProduct); } } } |
Product 1 : 85348320 Product 2 : 21726