For a given 4 × 4 matrix, the task is to interchange the elements of the first and last rows and then return the resultant matrix.
Illustration:
Input 1: 1 1 5 0 2 3 7 2 8 9 1 3 6 7 8 2 Output 1: 6 7 8 2 2 3 7 2 8 9 1 3 1 1 5 0 Input 2: 7 8 9 10 11 13 14 1 15 7 12 22 11 21 30 1 Output 2: 11 21 30 1 11 13 14 1 15 7 12 22 7 8 9 10
Approach:
To get the required output, we need to swap the elements of the first and the last row of the stated matrix.
Example
Java
// Java Program to Interchange Elements of First // and Last Row in a Matrix // Importing input output classes import java.io.*; // Main Class public class GFG { // Method 1 // To swap First and Last Row static void swap_First_last( int mat[][]) { int rws = mat.length; // Interchanging of elements between the // first and last rows for ( int j = 0 ; j < mat[ 0 ].length; j++) { // Using temporary variable so in order // not to lose the values of the matrix // Simply, swapping the values stored int temp = mat[ 0 ][j]; mat[ 0 ][j] = mat[rws - 1 ][j]; mat[rws - 1 ][j] = temp; } } // Method 2 // Main driver method public static void main(String args[]) throws IOException { // Input integer matrix int mat[][] = { { 2 , 3 , 4 , 5 }, { 8 , 9 , 6 , 15 }, { 13 , 22 , 11 , 18 }, { 19 , 1 , 2 , 0 } }; // Display message only System.out.println( "Input matrix is as follows : " ); // Printing the Input matrix for ( int j = 0 ; j < mat.length; j++) { for ( int k = 0 ; k < mat[ 0 ].length; k++) // Print the elements of the input matrix System.out.print(mat[j][k] + " " ); // New line as row ended System.out.println(); } System.out.println( "Swapped matrix is as follows : " ); // Calling the (method1) to swap rows in a matrix swap_First_last(mat); // Printing the Swapped matrix for ( int j = 0 ; j < mat.length; j++) { for ( int k = 0 ; k < mat[ 0 ].length; k++) // Print the elements of the swapped matrix System.out.print(mat[j][k] + " " ); // New line as row ended System.out.println(); } } } |
Input matrix is as follows : 2 3 4 5 8 9 6 15 13 22 11 18 19 1 2 0 Swapped matrix is as follows : 19 1 2 0 8 9 6 15 13 22 11 18 2 3 4 5
Time Complexity: O(n*m) where n and m are numbers of rows and columns respectively.
Auxiliary Space: O(1)