Naor-Reingold Pseudo-Random Function is a function of generating random numbers. Moni Naor and Omer Reingold described efficient constructions for various cryptographic primitives in the private key as well as public-key cryptography.
Example:
Input : N = 5 Output: 9.0, 9.0, 3.0, 9.0, 3.0 Input : N = 7 Output: 9.0, 81.0, 9.0, 9.0, 3.0, 3.0, 9.0
Algorithm:
- Declare the variables p, l, g, n, x and arrays a[] and arr[]
- Take input from the user for generating random numbers
- Generate random numbers and use the defined approach:
Let p and l be prime numbers with l|p−1. Select an element g ε Fp* of multiplicative order l. Then for each n-dimensional vector a = (a0,a1, ..., an). They define the function as: fa(x)=ga0.a1x1a2x2…..anxn ε Fp
- Print the random numbers
Below is the implementation of the Naor-Reingold Pseudo-Random Function:
Java
// Java Program to Implement Naor-Reingold // Pseudo Random Function import java.util.*; public class Main { public static void randomNumbers() { // Creating arrays and defining variables int p = 7 , l = 2 , g = 3 , n = 6 , x; int a[] = { 1 , 2 , 2 , 1 }; int arr[] = new int [ 4 ]; Random random = new Random(); int num = 10 ; System.out.println( "The Random numbers are: " ); // Generating Random Numbers using // Naor-Reingold Pseudo Random Function approach for ( int i = 0 ; i < num; i++) { x = random.nextInt(num) % 16 ; for ( int j = 3 ; j >= 0 ; j--) { arr[j] = x % 2 ; x /= 2 ; } int mult = 1 ; for ( int k = 0 ; k < 4 ; k++) { mult *= Math.pow(a[k], arr[k]); } System.out.print(Math.pow(g, mult) + ", " ); } } public static void main(String args[]) { randomNumbers(); } } |
The Random numbers are: 9.0, 9.0, 3.0, 81.0, 3.0, 81.0, 9.0, 9.0, 3.0, 3.0,