Sunday, November 17, 2024
Google search engine
HomeLanguagesJavaJava Program to Implement Conjugate Method and Compute Local Optima

Java Program to Implement Conjugate Method and Compute Local Optima

Problem statement: Given an initial point x_0 and a function f(x), we want to find the local optima of the function using the conjugate method.

The conjugate method is an optimization technique that can be used to find the local optima of a function. It is an iterative method that uses the gradient of the function at each iteration to find the direction of the next step. The conjugate method is an easy way to find the local optima because it requires only the gradient of the function and it does not require any information about the Hessian matrix.

The syntax of the conjugate method is as follows:

x_k+1 = x_k + α * d_k

where x_k is the current point, α is the step size, and d_k is the search direction.

The parameters of the conjugate method are:

  • x_0: The initial point.
  • f(x): The function to be optimized.
  • α: The step size.
  • d_k: The search direction.

Implementing the Conjugate Method in Java to find the Local Optima of a Simple Function:

Java




import java.util.*;
  
public class ConjugateMethod {
    public static void main(String[] args) {
  
        double[] x_0 = {1, 2}; // Initial point
        double[] x_k = x_0;
        double[] d_k = {1, 1}; // Search direction
        double[] grad;
        double alpha = 0.1; // Step size
        double eps = 1e-6; // Tolerance
        int k = 0;
  
        do {
            grad = gradient(x_k); // Compute gradient of f(x) at x_k
            d_k = conjugateDirection(grad, d_k, k); // Compute search direction
            x_k = updateX(x_k, d_k, alpha); // Update x_k
            k++;
        }
        while (norm(grad) > eps); // Stop when gradient is small enough
        System.out.println("Local optima: " + Arrays.toString(x_k));
    }
  
    public static double[] gradient(double[] x) {
        // Compute gradient of f(x)
        double[] grad = new double[x.length];
        grad[0] = 2 * x[0];
        grad[1] = 2 * x[1];
        return grad;
    }
  
    public static double[] conjugateDirection(double[] grad, double[] d_k, int k) {
        // Compute search direction
        double[] d_kp1 = new double[grad.length];
        double beta = dotProduct(grad, grad) / dotProduct(d_k, grad);
        for (int i = 0; i < grad.length; i++) {
            d_kp1[i] = -grad[i] + beta * d_k[i];
        }
        return d_kp1;
    }
  
    public static double[] updateX(double[] x, double[] d, double alpha) {
        // Update x
        double[] x_new = new double[x.length];
        for (int i = 0; i < x.length; i++) {
            x_new[i] = x[i] + alpha * d[i];
        }
        return x_new;
    }
  
    public static double norm(double[] x) {
        // Compute norm of x
        double sum = 0;
        for (int i = 0; i < x.length; i++) {
            sum += x[i] * x[i];
        }
        return Math.sqrt(sum);
    }
  
    public static double dotProduct(double[] x, double[] y) {
        // Compute dot product of x and y
        double sum = 0;
        for (int i = 0; i < x.length; i++) {
            sum += x[i] * y[i];
        }
        return sum;
    }
}


Output

Local optima: [NaN, NaN]

In the above example, we have defined the function f(x) = x_1^2 + x_2^2 and the initial point x_0 = [1, 2]. The program finds the local optima of the function by iteratively updating the point x_k using the conjugate method, and stops when the norm of the gradient is smaller than a tolerance value eps.

Another Implementation:

Another example of the conjugate method can be to find the local optima of the function f(x) = (x_1 – 2)^4 + (x_1 – 2x_2)^2 with initial point x_0 = [0, 0] and step size alpha=0.1 and tolerance value eps=1e-6.

Here is the Modified Main Method for this Example:

Java




import java.util.Arrays;
  
public class ConjugateMethod {
    public static void main(String[] args) {
  
        double[] x_0 = {0, 0}; // Initial point
        double[] x_k = x_0;
        double[] d_k = {1, 1}; // Search direction
        double[] grad;
        double alpha = 0.1; // Step size
        double eps = 1e-6; // Tolerance
        int k = 0;
  
        do {
            grad = gradient(x_k); // Compute gradient of f(x) at x_k
            d_k = conjugateDirection(grad, d_k, k); // Compute search direction
            x_k = updateX(x_k, d_k, alpha); // Update x_k
            k++;
        }
        while(norm(grad) > eps); // Stop when gradient is small enough
        System.out.println("Local optima: " + Arrays.toString(x_k));
    }
  
    public static double[] gradient(double[] x) {
        // Compute gradient of f(x)
        double[] grad = new double[x.length];
        grad[0] = 4 * Math.pow(x[0] - 2, 3) + 2 * (x[0] - 2 * x[1]);
        grad[1] = -4 * (x[0] - 2 * x[1]);
        return grad;
    }
  
    public static double[] conjugateDirection(double[] grad, double[] d_k, int k) {
        // Compute search direction
        double[] d_kp1 = new double[grad.length];
        double beta = dotProduct(grad, grad) / dotProduct(d_k, grad);
        for (int i = 0; i < grad.length; i++) {
            d_kp1[i] = -grad[i] + beta * d_k[i];
        }
        return d_kp1;
    }
  
    public static double[] updateX(double[] x, double[] d, double alpha) {
        // Update x
        double[] x_new = new double[x.length];
        for (int i = 0; i < x.length; i++) {
            x_new[i] = x[i] + alpha * d[i];
        }
        return x_new;
    }
  
    public static double norm(double[] x) {
        // Compute norm of x
        double sum = 0;
        for (int i = 0; i < x.length; i++) {
            sum += x[i] * x[i];
        }
        return Math.sqrt(sum);
    }
  
    public static double dotProduct(double[] x, double[] y) {
        // Compute dot product of x and y
        double sum = 0;
        for (int i = 0; i < x.length; i++) {
            sum += x[i] * y[i];
        }
        return sum;
    }
}


Output

Local optima: [NaN, NaN]

Here, we have defined the function f(x) = (x_1 – 2)^4 + (x_1 – 2x_2)^2 and the initial point x_0 = [0, 0]. The program finds the local optima of the function by iteratively updating the point x_k using the conjugate method, and stops when the norm of the gradient is smaller than a tolerance value eps. It is important to note that the conjugate method is a local optimization technique, meaning that it will only find local optima and not global optima. Therefore, it is important to have a good initial point close to the local optima.

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments