Given an array A[] of size N. Solve Q queries. Find the product in the range [L, R] under modulo P ( P is Prime).
Examples:
Input : A[] = {1, 2, 3, 4, 5, 6} L = 2, R = 5, P = 229 Output : 120 Input : A[] = {1, 2, 3, 4, 5, 6}, L = 2, R = 5, P = 113 Output : 7
Brute Force
For each of the queries, traverse each element in the range [L, R] and calculate the product under modulo P. This will answer each query in O(N).
Java
// Product in range Queries in O(N) import java.io.*; class GFG { // Function to calculate // Product in the given range. static int calculateProduct( int []A, int L, int R, int P) { // As our array is 0 based as // and L and R are given as 1 // based index. L = L - 1 ; R = R - 1 ; int ans = 1 ; for ( int i = L; i <= R; i++) { ans = ans * A[i]; ans = ans % P; } return ans; } // Driver code static public void main (String[] args) { int []A = { 1 , 2 , 3 , 4 , 5 , 6 }; int P = 229 ; int L = 2 , R = 5 ; System.out.println( calculateProduct(A, L, R, P)); L = 1 ; R = 3 ; System.out.println( calculateProduct(A, L, R, P)); } } // This code is contributed by vt_m. |
Output :
120 6
Efficient Using Modular Multiplicative Inverse:
As P is prime, we can use Modular Multiplicative Inverse. Using dynamic programming, we can calculate a pre-product array under modulo P such that the value at index i contains the product in the range [0, i]. Similarly, we can calculate the pre-inverse product under modulo P. Now each query can be answered in O(1).
The inverse product array contains the inverse product in the range [0, i] at index i. So, for the query [L, R], the answer will be Product[R]*InverseProduct[L-1]
Note: We can not calculate the answer as Product[R]/Product[L-1] because the product is calculated under modulo P. If we do not calculate the product under modulo P there is always a possibility of overflow.
Java
// Java program to find Product // in range Queries in O(1) class GFG { static int MAX = 100 ; int pre_product[] = new int [MAX]; int inverse_product[] = new int [MAX]; // Returns modulo inverse of a // with respect to m using extended // Euclid Algorithm Assumption: a // and m are coprimes, // i.e., gcd(a, m) = 1 int modInverse( int a, int m) { int m0 = m, t, q; int x0 = 0 , x1 = 1 ; if (m == 1 ) return 0 ; while (a > 1 ) { // q is quotient q = a / m; t = m; // m is remainder now, // process same as // Euclid's algo m = a % m; a = t; t = x0; x0 = x1 - q * x0; x1 = t; } // Make x1 positive if (x1 < 0 ) x1 += m0; return x1; } // calculating pre_product array void calculate_Pre_Product( int A[], int N, int P) { pre_product[ 0 ] = A[ 0 ]; for ( int i = 1 ; i < N; i++) { pre_product[i] = pre_product[i - 1 ] * A[i]; pre_product[i] = pre_product[i] % P; } } // Calculating inverse_product array. void calculate_inverse_product( int A[], int N, int P) { inverse_product[ 0 ] = modInverse(pre_product[ 0 ], P); for ( int i = 1 ; i < N; i++) inverse_product[i] = modInverse(pre_product[i], P); } // Function to calculate Product // in the given range. int calculateProduct( int A[], int L, int R, int P) { // As our array is 0 based as and // L and R are given as 1 based index. L = L - 1 ; R = R - 1 ; int ans; if (L == 0 ) ans = pre_product[R]; else ans = pre_product[R] * inverse_product[L - 1 ]; return ans; } // Driver code public static void main(String[] s) { GFG d = new GFG(); // Array int A[] = { 1 , 2 , 3 , 4 , 5 , 6 }; // Prime P int P = 113 ; // Calculating PreProduct and // InverseProduct d.calculate_Pre_Product(A, A.length, P); d.calculate_inverse_product(A, A.length, P); // Range [L, R] in 1 base index int L = 2 , R = 5 ; System.out.println(d.calculateProduct(A, L, R, P)); L = 1 ; R = 3 ; System.out.println(d.calculateProduct(A, L, R, P)); } } // This code is contributed by Prerna Saini |
Output :
7 6
Please refer complete article on Products of ranges in an array for more details!