Given a dictionary find out if given word can be made by two words in the dictionary.
Note: Words in the dictionary must be unique and the word to be formed should not be a repetition of same words that are present in the Trie.
Examples:
Input : dictionary[] = {"news", "abcd", "tree", "neveropen", "paper"} word = "newspaper" Output : Yes We can form "newspaper" using "news" and "paper" Input : dictionary[] = {"neveropen", "code", "xyz", "forneveropen", "paper"} word = "neveropen" Output : Yes Input : dictionary[] = {"geek", "code", "xyz", "forneveropen", "paper"} word = "neveropen" Output : No
The idea is store all words of dictionary in a Trie. We do prefix search for given word. Once we find a prefix, we search for rest of the word.
Algorithm :
1- Store all the words of the dictionary in a Trie. 2- Start searching for the given word in Trie. If it partially matched then split it into two parts and then search for the second part in the Trie. 3- If both found, then return true. 4- Otherwise return false.
Below is the implementation of above idea.
C++
// C++ program to check if a string can be // formed by concatenating two words #include<bits/stdc++.h> using namespace std; // Converts key current character into index // use only 'a' through 'z' #define char_int(c) ((int)c - (int)'a') // Alphabet size #define SIZE (26) // Trie Node struct TrieNode { TrieNode *children[SIZE]; // isLeaf is true if the node represents // end of a word bool isLeaf; }; // Returns new trie node (initialized to NULLs) TrieNode *getNode() { TrieNode * newNode = new TrieNode; newNode->isLeaf = false ; for ( int i =0 ; i< SIZE ; i++) newNode->children[i] = NULL; return newNode; } // If not present, inserts key into Trie // If the key is prefix of trie node, just // mark leaf node void insert(TrieNode *root, string Key) { int n = Key.length(); TrieNode * pCrawl = root; for ( int i=0; i<n; i++) { int index = char_int(Key[i]); if (pCrawl->children[index] == NULL) pCrawl->children[index] = getNode(); pCrawl = pCrawl->children[index]; } // make last node as leaf node pCrawl->isLeaf = true ; } // Searches a prefix of key. If prefix is present, // returns its ending position in string. Else // returns -1. int findPrefix( struct TrieNode *root, string key) { int pos = -1, level; struct TrieNode *pCrawl = root; for (level = 0; level < key.length(); level++) { int index = char_int(key[level]); if (pCrawl->isLeaf == true ) pos = level; if (!pCrawl->children[index]) return pos; pCrawl = pCrawl->children[index]; } if (pCrawl != NULL && pCrawl->isLeaf) return level; } // Function to check if word formation is possible // or not bool isPossible( struct TrieNode* root, string word) { // Search for the word in the trie and // store its position upto which it is matched int len = findPrefix(root, word); // print not possible if len = -1 i.e. not // matched in trie if (len == -1) return false ; // If word is partially matched in the dictionary // as another word // search for the word made after splitting // the given word up to the length it is // already,matched string split_word(word, len, word.length()-(len)); int split_len = findPrefix(root, split_word); // check if word formation is possible or not return (len + split_len == word.length()); } // Driver program to test above function int main() { // Let the given dictionary be following vector<string> dictionary = { "neveropen" , "forneveropen" , "quiz" , "geek" }; string word = "neveropenquiz" ; //word to be formed // root Node of trie TrieNode *root = getNode(); // insert all words of dictionary into trie for ( int i=0; i<dictionary.size(); i++) insert(root, dictionary[i]); isPossible(root, word) ? cout << "Yes" : cout << "No" ; return 0; } |
Java
import java.util.ArrayList; import java.util.List; // Java program to check if a string can be // formed by concatenating two words public class GFG { // Alphabet size final static int SIZE = 26 ; // Trie Node static class TrieNode { TrieNode[] children = new TrieNode[SIZE]; // isLeaf is true if the node represents // end of a word boolean isLeaf; // constructor public TrieNode() { isLeaf = false ; for ( int i = 0 ; i< SIZE ; i++) children[i] = null ; } } static TrieNode root; // If not present, inserts key into Trie // If the key is prefix of trie node, just // mark leaf node static void insert(TrieNode root, String Key) { int n = Key.length(); TrieNode pCrawl = root; for ( int i= 0 ; i<n; i++) { int index = Key.charAt(i) - 'a' ; if (pCrawl.children[index] == null ) pCrawl.children[index] = new TrieNode(); pCrawl = pCrawl.children[index]; } // make last node as leaf node pCrawl.isLeaf = true ; } // Searches a prefix of key. If prefix is present, // returns its ending position in string. Else // returns -1. static List<Integer> findPrefix(TrieNode root, String key) { List<Integer> prefixPositions = new ArrayList<Integer>(); int level; TrieNode pCrawl = root; for (level = 0 ; level < key.length(); level++) { int index = key.charAt(level) - 'a' ; if (pCrawl.isLeaf == true ) prefixPositions.add(level); if (pCrawl.children[index] == null ) return prefixPositions; pCrawl = pCrawl.children[index]; } if (pCrawl != null && pCrawl.isLeaf) prefixPositions.add(level); return prefixPositions; } // Function to check if word formation is possible // or not static boolean isPossible(TrieNode root, String word) { // Search for the word in the trie and get its prefix positions // upto which there is matched List<Integer> prefixPositions1 = findPrefix(root, word); // Word formation is not possible if the word did not have // at least one prefix match if (prefixPositions1.isEmpty()) return false ; // Search for rest of substring for each prefix match for (Integer len1 : prefixPositions1) { String restOfSubstring = word.substring(len1, word.length()); List<Integer> prefixPositions2 = findPrefix(root, restOfSubstring); for (Integer len2 : prefixPositions2) { // check if word formation is possible if (len1 + len2 == word.length()) return true ; } } return false ; } // Driver program to test above function public static void main(String args[]) { // Let the given dictionary be following String[] dictionary = { "news" , "newspa" , "paper" , "geek" }; String word = "newspaper" ; //word to be formed // root Node of trie root = new TrieNode(); // insert all words of dictionary into trie for ( int i= 0 ; i<dictionary.length; i++) insert(root, dictionary[i]); if (isPossible(root, word)) System.out.println( "Yes" ); else System.out.println( "No" ); } } // This code is contributed by Sumit Ghosh // Updated by Narendra Jha |
Python3
class TrieNode: def __init__( self ): # Initialize a new TrieNode with a list of 26 children and isLeaf flag set to False self .children = [ None ] * 26 self .isLeaf = False def charToInt(ch): # Helper function to convert character to corresponding integer value (0-25) return ord (ch) - ord ( 'a' ) def insert(root, key): # Insert a new key into the Trie pCrawl = root for ch in key: # Convert character to integer index value index = charToInt(ch) # If child node doesn't exist, create one if not pCrawl.children[index]: pCrawl.children[index] = TrieNode() # Move to next child node pCrawl = pCrawl.children[index] # Mark the last node as a leaf node pCrawl.isLeaf = True def findPrefix(root, key): # Find the length of the longest prefix of the key that exists in the Trie pos = - 1 pCrawl = root for i, ch in enumerate (key): index = charToInt(ch) if pCrawl.isLeaf: pos = i if not pCrawl.children[index]: return pos pCrawl = pCrawl.children[index] return len (key) def isPossible(root, word): # Check if it is possible to split the word into two dictionary words len1 = findPrefix(root, word) if len1 = = - 1 : return False split_word = word[len1:] len2 = findPrefix(root, split_word) return len1 + len2 = = len (word) # Driver program to test above function if __name__ = = "__main__" : # Define dictionary and word to test dictionary = [ "neveropen" , "forneveropen" , "quiz" , "geek" ] word = "neveropenquiz" # Create root node of Trie root = TrieNode() # Insert each dictionary word into the Trie for key in dictionary: insert(root, key) # Check if it is possible to split the word into two dictionary words and print result print ( "Yes" if isPossible(root, word) else "No" ) |
C#
// C# program to check if a string can be // formed by concatenating two words using System; using System.Collections.Generic; class GFG { // Alphabet size readonly public static int SIZE = 26; // Trie Node public class TrieNode { public TrieNode []children = new TrieNode[SIZE]; // isLeaf is true if the node // represents end of a word public bool isLeaf; // constructor public TrieNode() { isLeaf = false ; for ( int i = 0 ; i < SIZE ; i++) children[i] = null ; } } static TrieNode root; // If not present, inserts key into Trie // If the key is prefix of trie node, just // mark leaf node static void insert(TrieNode root, String Key) { int n = Key.Length; TrieNode pCrawl = root; for ( int i = 0; i < n; i++) { int index = Key[i] - 'a' ; if (pCrawl.children[index] == null ) pCrawl.children[index] = new TrieNode(); pCrawl = pCrawl.children[index]; } // make last node as leaf node pCrawl.isLeaf = true ; } // Searches a prefix of key. If prefix // is present, returns its ending position // in string. Else returns -1. static List< int > findPrefix(TrieNode root, String key) { List< int > prefixPositions = new List< int >(); int level; TrieNode pCrawl = root; for (level = 0; level < key.Length; level++) { int index = key[level] - 'a' ; if (pCrawl.isLeaf == true ) prefixPositions.Add(level); if (pCrawl.children[index] == null ) return prefixPositions; pCrawl = pCrawl.children[index]; } if (pCrawl != null && pCrawl.isLeaf) prefixPositions.Add(level); return prefixPositions; } // Function to check if word // formation is possible or not static bool isPossible(TrieNode root, String word) { // Search for the word in the trie // and get its prefix positions // upto which there is matched List< int > prefixPositions1 = findPrefix(root, word); // Word formation is not possible // if the word did not have // at least one prefix match if (prefixPositions1.Count==0) return false ; // Search for rest of substring // for each prefix match foreach ( int len1 in prefixPositions1) { String restOfSubstring = word.Substring(len1, word.Length-len1); List< int > prefixPositions2 = findPrefix(root, restOfSubstring); foreach ( int len2 in prefixPositions2) { // check if word formation is possible if (len1 + len2 == word.Length) return true ; } } return false ; } // Driver code public static void Main(String []args) { // Let the given dictionary be following String[] dictionary = { "news" , "newspa" , "paper" , "geek" }; // word to be formed String word = "newspaper" ; // root Node of trie root = new TrieNode(); // insert all words of dictionary into trie for ( int i = 0; i < dictionary.Length; i++) insert(root, dictionary[i]); if (isPossible(root, word)) Console.WriteLine( "Yes" ); else Console.WriteLine( "No" ); } } // This code is contributed by 29AjayKumar |
Javascript
<script> // Javascript program to check if a string // can be formed by concatenating two words // Alphabet size let SIZE = 26; // Trie Node class TrieNode { constructor() { this .isLeaf = false ; this .children = new Array(SIZE); for (let i = 0 ; i < SIZE; i++) this .children[i] = null ; } } let root; // If not present, inserts key into Trie // If the key is prefix of trie node, just // mark leaf node function insert(root, Key) { let n = Key.length; let pCrawl = root; for (let i = 0; i < n; i++) { let index = Key[i].charCodeAt(0) - 'a' .charCodeAt(0); if (pCrawl.children[index] == null ) pCrawl.children[index] = new TrieNode(); pCrawl = pCrawl.children[index]; } // Make last node as leaf node pCrawl.isLeaf = true ; } // Searches a prefix of key. If prefix // is present, returns its ending // position in string. Else returns -1. function findPrefix(root, key) { let prefixPositions = []; let level; let pCrawl = root; for (level = 0; level < key.length; level++) { let index = key[level].charCodeAt(0) - 'a' .charCodeAt(0); if (pCrawl.isLeaf == true ) prefixPositions.push(level); if (pCrawl.children[index] == null ) return prefixPositions; pCrawl = pCrawl.children[index]; } if (pCrawl != null && pCrawl.isLeaf) prefixPositions.push(level); return prefixPositions; } // Function to check if word formation // is possible or not function isPossible(root, word) { // Search for the word in the trie and // get its prefix positions upto which // there is matched let prefixPositions1 = findPrefix(root, word); // Word formation is not possible if // the word did not have at least one // prefix match if (prefixPositions1.length == 0) return false ; // Search for rest of substring for // each prefix match for (let len1 = 0; len1 < prefixPositions1.length; len1++) { let restOfSubstring = word.substring( prefixPositions1[len1], word.length); let prefixPositions2 = findPrefix( root, restOfSubstring); for (let len2 = 0; len2 < prefixPositions2.length; len2++) { // Check if word formation is possible if (prefixPositions1[len1] + prefixPositions2[len2] == word.length) return true ; } } return false ; } // Driver code let dictionary = [ "news" , "newspa" , "paper" , "geek" ]; // word to be formed let word = "newspaper" ; // Root Node of trie root = new TrieNode(); // Insert all words of dictionary into trie for (let i = 0; i < dictionary.length; i++) insert(root, dictionary[i]); if (isPossible(root, word)) document.write( "Yes" ); else document.write( "No" ); // This code is contributed by rag2127 </script> |
Output:
Yes
Exercise :
A generalized version of the problem is to check if a given word can be formed using concatenation of 1 or more dictionary words. Write code for the generalized version.
Time Complexity: The time complexity of the given program is O(MN), where M is the length of the given word and N is the number of words in the dictionary. This is because the program needs to traverse the given word and perform a prefix search in the trie for each substring of the word, which takes O(M) time. Additionally, the program needs to insert all the words in the dictionary into the trie, which takes O(NM) time.
Auxiliary Space: The space complexity of the program is O(NM), where N is the number of words in the dictionary and M is the maximum length of a word in the dictionary. This is because the program needs to store the trie data structure, which requires O(NM) space.
Another Approach
The above approach is implementing the Trie data structure to efficiently store and search the dictionary words. However, we can optimize the code by using the unordered_set data structure instead of Trie. The unordered_set is a hash-based data structure that has an average constant time complexity O(1) for insertion and search operations. Therefore, it can be used to efficiently search for words in the dictionary.
Approach:
- Check if the given word exists in the dictionary. If it does, return true.
- If the given word is not found in the dictionary, then check if it can be formed by concatenating two or more words from the dictionary recursively.
- To check if a word can be formed by concatenating two or more words from the dictionary, the code splits the word into a prefix and a suffix at every possible position and then checks if the prefix exists in the dictionary.
- If the prefix exists in the dictionary, then the suffix is checked recursively to see if it can be formed by concatenating two or more words from the dictionary. This is done by calling the “isPossible” function recursively with the suffix and the dictionary as input.
- If the suffix can be formed by concatenating two or more words from the dictionary, then the entire word can be formed by concatenating the prefix and suffix. In this case, the function returns true.
- If none of the prefixes can be found in the dictionary, or if none of the suffixes can be formed by concatenating two or more words from the dictionary, then the function returns false.
Algorithm:
This code uses recursion to check whether a given word can be formed by concatenating two words from a given dictionary.
- The function “isPossible” takes two parameters: an unordered_set “dict” containing the dictionary of words and a string word to be checked.
- If the word is found in the dictionary, the function returns true. Otherwise, it recursively checks all possible prefixes and suffixes of the word to see if they can be formed by concatenating two words from the “dict”.
- The recursion stops when either the prefix is not found in the dictionary, or the suffix cannot be formed by concatenating two words from the “dict”.
- If the word can be formed by concatenating two words from the “dict”, the function returns true. Otherwise, it returns false.
- The “main” function creates an “unordered_set” of strings containing the dictionary, and then calls the “isPossible” function to check if the given word can be formed by concatenating two words from the dictionary. Finally, it prints “Yes” if the word can be formed, and “No” otherwise.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h> using namespace std; // Function to check if word formation is possible // or not bool isPossible(unordered_set<string>& dict, string word) { // If word is found in the dictionary, it can be formed if (dict.find(word) != dict.end()) return true ; // Check if word can be formed by concatenating // two words from the dictionary int n = word.length(); for ( int i = 1; i < n; i++) { string prefix = word.substr(0, i); string suffix = word.substr(i); // Check if prefix exists in dictionary and // suffix can be formed by concatenating two // words from the dictionary recursively if (dict.find(prefix) != dict.end() && isPossible(dict, suffix)) return true ; } // Word cannot be formed by concatenating // two words from the dictionary return false ; } // Driver program to test above function int main() { // Let the given dictionary be following unordered_set<string> dictionary = { "neveropen" , "forneveropen" , "quiz" , "geek" }; string word = "neveropenquiz" ; //word to be formed isPossible(dictionary, word) ? cout << "Yes" : cout << "No" ; return 0; } //This code is contributed by rudra1807raj |
Java
import java.util.*; public class WordFormation { // Function to check if word formation is possible or not public static boolean isPossible(Set<String> dict, String word) { // If word is found in the dictionary, it can be formed if (dict.contains(word)) return true ; // Check if word can be formed by concatenating // two words from the dictionary int n = word.length(); for ( int i = 1 ; i < n; i++) { String prefix = word.substring( 0 , i); String suffix = word.substring(i); // Check if prefix exists in dictionary and // suffix can be formed by concatenating two // words from the dictionary recursively if (dict.contains(prefix) && isPossible(dict, suffix)) return true ; } // Word cannot be formed by concatenating // two words from the dictionary return false ; } // Driver program to test above function public static void main(String[] args) { // Let the given dictionary be following Set<String> dictionary = new HashSet<String>(); dictionary.add( "neveropen" ); dictionary.add( "forneveropen" ); dictionary.add( "quiz" ); dictionary.add( "geek" ); String word = "neveropenquiz" ; // word to be formed System.out.println(isPossible(dictionary, word) ? "Yes" : "No" ); } } //This code is contributed by rudra1807raj |
Python3
# Python Code # importing the required library import itertools # Function to check if word formation is possible or not def isPossible( dict , word): # If word is found in the dictionary, it can be formed if word in dict : return True # Check if word can be formed by concatenating # two words from the dictionary for i in range ( 1 , len (word)): prefix = word[:i] suffix = word[i:] # Check if prefix exists in dictionary and # suffix can be formed by concatenating two # words from the dictionary recursively if prefix in dict and isPossible( dict , suffix): return True # Word cannot be formed by concatenating # two words from the dictionary return False # Driver program to test above function if __name__ = = '__main__' : # Let the given dictionary be following dictionary = { 'neveropen' , 'forneveropen' , 'quiz' , 'geek' } word = 'neveropenquiz' # word to be formed if isPossible(dictionary, word): print ( "Yes" ) else : print ( "No" ) |
C#
using System; using System.Collections.Generic; public class WordFormation { // Function to check if word formation is possible or not public static bool IsPossible(HashSet< string > dict, string word) { // If word is found in the dictionary, it can be formed if (dict.Contains(word)) return true ; // Check if word can be formed by concatenating // two words from the dictionary int n = word.Length; for ( int i = 1; i < n; i++) { string prefix = word.Substring(0, i); string suffix = word.Substring(i); // Check if prefix exists in dictionary and // suffix can be formed by concatenating two // words from the dictionary recursively if (dict.Contains(prefix) && IsPossible(dict, suffix)) return true ; } // Word cannot be formed by concatenating // two words from the dictionary return false ; } // Driver program to test above function public static void Main() { // Let the given dictionary be following HashSet< string > dictionary = new HashSet< string >(); dictionary.Add( "neveropen" ); dictionary.Add( "forneveropen" ); dictionary.Add( "quiz" ); dictionary.Add( "geek" ); string word = "neveropenquiz" ; // word to be formed Console.WriteLine(IsPossible(dictionary, word) ? "Yes" : "No" ); } } //This code is contributed by rudra1807raj |
Javascript
function isPossible(dict, word) { // If word is found in the dictionary, it can be formed if (dict.has(word)) { return true ; } // Check if word can be formed by concatenating // two words from the dictionary let n = word.length; for (let i = 1; i < n; i++) { let prefix = word.substring(0, i); let suffix = word.substring(i); // Check if prefix exists in dictionary and // suffix can be formed by concatenating two // words from the dictionary recursively if (dict.has(prefix) && isPossible(dict, suffix)) { return true ; } } // Word cannot be formed by concatenating // two words from the dictionary return false ; } // Driver program to test above function let dictionary = new Set([ "neveropen" , "forneveropen" , "quiz" , "geek" ]); let word = "neveropenquiz" ; //word to be formed isPossible(dictionary, word) ? console.log( "Yes" ) : console.log( "No" ); //Note that the unordered_set used in the C++ code has been replaced with //a Set in JavaScript. The Set in JavaScript is similar to unordered_set in //C++ and allows for fast lookup of elements. The substring function in //JavaScript is used to extract a portion of a string. The console.log function //is used to print the output. //This code is contributed by rudra1807raj |
Output:
Yes
Time Complexity: The time complexity of the “isPossible” function in this code is O(N^3), where N is the length of the input word. This is because, in the worst case, the function will need to check every possible partition of the word into two parts, which is O(N^2), and for each partition, it may need to recursively check both parts, which can take an additional O(N) time.
Auxiliary Space: The space complexity of this function is also O(N^3) in the worst case, due to the recursion stack. Specifically, in the worst case, the recursion depth will be O(N), and at each level of the recursion, the function may need to store a string of length up to N. Therefore, the overall space complexity is O(N^3).
This article is contributed by Sahil Chhabra . If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!