Sunday, November 17, 2024
Google search engine
HomeData Modelling & AIWays to choose balls such that at least one ball is chosen

Ways to choose balls such that at least one ball is chosen

Given an integer N, the task is to find the ways to choose some balls out of the given N balls such that at least one ball is chosen. Since the value can be large so print the value modulo 1000000007.
Example: 
 

Input: N = 2 
Output:
The three ways are “*.”, “.*” and “**” where ‘*’ denotes 
the chosen ball and ‘.’ denotes the ball which didn’t get chosen.
Input: N = 30000 
Output: 165890098 
 

 

Approach: There are N balls and each ball can either be chosen or not chosen. Total number of different configurations is 2 * 2 * 2 * … * N. We can write this as 2N. But the state where no ball is chosen has to be subtracted from the answer. So, the result will be (2N – 1) % 1000000007.
Below is the implementation of the above approach:
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
const int MOD = 1000000007;
 
// Function to return the count of
// ways to choose the balls
int countWays(int n)
{
 
    // Calculate (2^n) % MOD
    int ans = 1;
    for (int i = 0; i < n; i++) {
        ans *= 2;
        ans %= MOD;
    }
 
    // Subtract the only where
    // no ball was chosen
    return ((ans - 1 + MOD) % MOD);
}
 
// Driver code
int main()
{
    int n = 3;
 
    cout << countWays(n);
 
    return 0;
}


Java




// Java implementation of the approach
class GFG
{
static int MOD = 1000000007;
 
// Function to return the count of
// ways to choose the balls
static int countWays(int n)
{
 
    // Calculate (2^n) % MOD
    int ans = 1;
    for (int i = 0; i < n; i++)
    {
        ans *= 2;
        ans %= MOD;
    }
 
    // Subtract the only where
    // no ball was chosen
    return ((ans - 1 + MOD) % MOD);
}
 
// Driver code
public static void main(String[] args)
{
    int n = 3;
 
    System.out.println(countWays(n));
}
}
 
// This code is contributed by Rajput-Ji


Python3




# Python3 implementation of the approach
 
MOD = 1000000007
 
# Function to return the count of
# ways to choose the balls
def countWays(n):
     
    # Return ((2 ^ n)-1) % MOD
    return (((2**n) - 1) % MOD)
 
# Driver code
n = 3
print(countWays(n))


C#




// C# implementation of the approach
using System;
     
class GFG
{
static int MOD = 1000000007;
 
// Function to return the count of
// ways to choose the balls
static int countWays(int n)
{
 
    // Calculate (2^n) % MOD
    int ans = 1;
    for (int i = 0; i < n; i++)
    {
        ans *= 2;
        ans %= MOD;
    }
 
    // Subtract the only where
    // no ball was chosen
    return ((ans - 1 + MOD) % MOD);
}
 
// Driver code
public static void Main(String[] args)
{
    int n = 3;
 
    Console.WriteLine(countWays(n));
}
}
 
// This code is contributed by Rajput-Ji


Javascript




<script>
// javascript implementation of the approach
 
     MOD = 1000000007;
 
    // Function to return the count of
    // ways to choose the balls
    function countWays(n) {
 
        // Calculate (2^n) % MOD
        var ans = 1;
        for (i = 0; i < n; i++) {
            ans *= 2;
            ans %= MOD;
        }
 
        // Subtract the only where
        // no ball was chosen
        return ((ans - 1 + MOD) % MOD);
    }
 
    // Driver code
     
        var n = 3;
 
        document.write(countWays(n));
 
// This code contributed by gauravrajput1
</script>


Output: 

7

 

Time Complexity : O(n)
Auxiliary Space : O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments