Saturday, November 16, 2024
Google search engine
HomeData Modelling & AIVertical width of Binary tree | Set 2

Vertical width of Binary tree | Set 2

Given a binary tree, find the vertical width of the binary tree. The width of a binary tree is the number of vertical paths.

Examples: 

Input : 
             7
           /  \
          6    5
         / \  / \
        4   3 2  1 
Output : 5

Input :
           1
         /    \
        2       3
       / \     / \
      4   5   6   7
               \   \ 
                8   9 
Output : 6

Prerequisite: Print Binary Tree in Vertical order 

In this image, the tree contains 6 vertical lines which is the required width of tree.

Approach: 

In this approach, we use the approach for printing vertical View of binary tree. Store the horizontal distances in a set and return 1 + highest horizontal distance – lowest horizontal distance. 1 is added to consider horizontal distance 0 as well. While going left, do hd – 1 and for right do hd + 1. We insert all possible distances in a hash table and finally return size of the hash table.

Implementation:

C++




// CPP code to find vertical
// width of a binary tree
#include <bits/stdc++.h>
using namespace std;
 
// Tree class
class Node
{
public :
    int data;
    Node *left, *right;
 
    // Constructor
    Node(int data_new)
    {
        data = data_new;
        left = right = NULL;
    }
};
 
// Function to fill hd in set.
void fillSet(Node* root, unordered_set<int>& s,
                                       int hd)
{
    if (!root)
        return;
 
    fillSet(root->left, s, hd - 1);
    s.insert(hd);
    fillSet(root->right, s, hd + 1);
}
 
int verticalWidth(Node* root)
{
    unordered_set<int> s;
 
    // Third parameter is horizontal
    // distance
    fillSet(root, s, 0);
 
    return s.size();
}
 
int main()
{
    Node* root = NULL;
 
    // Creating the above tree
    root = new Node(1);
    root->left = new Node(2);
    root->right = new Node(3);
    root->left->left = new Node(4);
    root->left->right = new Node(5);
    root->right->left = new Node(6);
    root->right->right = new Node(7);
    root->right->left->right = new Node(8);
    root->right->right->right = new Node(9);
 
    cout << verticalWidth(root) << "\n";
 
    return 0;
}


Java




/* Java code to find the vertical width of a binary tree */
import java.io.*;
import java.util.*;
 
/* A binary tree node has data, pointer to left child
and a pointer to right child */
class Node
{
    int data;
    Node left, right;
     
    Node(int item)
    {
        data = item;
        left = right = null;
    }
}
 
class BinaryTree
{
    Node root;
 
    /* UTILITY FUNCTIONS */
    // Function to fill hd in set.
    void fillSet(Node root,Set<Integer> set,int hd)
    {
        if(root == null) return;
        fillSet(root.left,set,hd - 1);
        set.add(hd);
        fillSet(root.right,set,hd + 1);
    }
 
 
    int verticalWidth(Node root)
    {
        Set<Integer> set = new HashSet<Integer>();
         
        // Third parameter is horizontal distance
        fillSet(root,set,0);
        return set.size();
    }
     
    /* Driver program to test above functions */
    public static void main(String args[])
    {
        BinaryTree tree = new BinaryTree();
         
        /*
        Constructed binary tree is:
            1
            / \
        2 3
        / \ \
        4 5     8
                / \
                6 7
        */
        tree.root = new Node(1);
        tree.root.left = new Node(2);
        tree.root.right = new Node(3);
        tree.root.left.left = new Node(4);
        tree.root.left.right = new Node(5);
        tree.root.right.right = new Node(8);
        tree.root.right.right.left = new Node(6);
        tree.root.right.right.right = new Node(7);
        System.out.println(tree.verticalWidth(tree.root));
         
    }
}
 
/* This code is contributed by Ashok Borra */


Python3




# Python code to find vertical
# width of a binary tree
 
class Node:
    def __init__(self, data):
        self.data = data
        self.left = self.right = None
 
# Function to fill hd in set.
def fillSet(root, s, hd):
    if (not root):
        return
 
    fillSet(root.left, s, hd - 1)
    s.add(hd)
    fillSet(root.right, s, hd + 1)
 
def verticalWidth(root):
    s = set()
 
    # Third parameter is horizontal
    # distance
    fillSet(root, s, 0)
 
    return len(s)
 
if __name__ == '__main__':
 
    # Creating the above tree
    root = Node(1)
    root.left = Node(2)
    root.right = Node(3)
    root.left.left = Node(4)
    root.left.right = Node(5)
    root.right.left = Node(6)
    root.right.right = Node(7)
    root.right.left.right = Node(8)
    root.right.right.right = Node(9)
 
    print(verticalWidth(root))
 
# This code is contributed by PranchalK


C#




// C# code to find the vertical width
// of a binary tree
using System;
using System.Collections.Generic;
 
/* A binary tree node has data,
pointer to left child and a
pointer to right child */
public class Node
{
    public int data;
    public Node left, right;
     
    public Node(int item)
    {
        data = item;
        left = right = null;
    }
}
 
public class BinaryTree
{
    Node root;
 
    /* UTILITY FUNCTIONS */
    // Function to fill hd in set.
    void fillSet(Node root, HashSet<int> set, int hd)
    {
        if(root == null) return;
        fillSet(root.left, set, hd - 1);
        set.Add(hd);
        fillSet(root.right, set, hd + 1);
    }
 
    int verticalWidth(Node root)
    {
        HashSet<int> set = new HashSet<int>();
         
        // Third parameter is horizontal distance
        fillSet(root,set, 0);
        return set.Count;
    }
     
    // Driver Code
    public static void Main(String []args)
    {
        BinaryTree tree = new BinaryTree();
         
        /*
        Constructed binary tree is:
            1
            / \
        2 3
        / \ \
        4 5     8
                / \
                6 7
        */
        tree.root = new Node(1);
        tree.root.left = new Node(2);
        tree.root.right = new Node(3);
        tree.root.left.left = new Node(4);
        tree.root.left.right = new Node(5);
        tree.root.right.right = new Node(8);
        tree.root.right.right.left = new Node(6);
        tree.root.right.right.right = new Node(7);
        Console.WriteLine(tree.verticalWidth(tree.root));
         
    }
}
 
// This code is contributed by PrinciRaj1992


Javascript




<script>
 
// Javascript code to find the vertical
// width of a binary tree
 
/* A binary tree node has data,
pointer to left child and a
pointer to right child */
class Node
{
    constructor(item)
    {
        this.data = item;
        this.left = null;
        this.right = null;
    }
}
 
var root;
 
/* UTILITY FUNCTIONS */
// Function to fill hd in set.
function fillSet(root,set, hd)
{
    if (root == null)
        return;
         
    fillSet(root.left, set, hd - 1);
    set.add(hd);
    fillSet(root.right, set, hd + 1);
}
 
function verticalWidth(root)
{
    var set = new Set();
     
    // Third parameter is horizontal
    // distance
    fillSet(root,set, 0);
    return set.size;
}
 
// Driver Code
/*
Constructed binary tree is:
     1
    / \
   2   3
  / \   \
 4   5   8
        / \
        6 7
*/
root = new Node(1);
root.left = new Node(2);
root.right = new Node(3);
root.left.left = new Node(4);
root.left.right = new Node(5);
root.right.right = new Node(8);
root.right.right.left = new Node(6);
root.right.right.right = new Node(7);
 
document.write(verticalWidth(root));
 
// This code is contributed by rrrtnx
 
</script>


Output

6

Time Complexity: O(n)
Auxiliary Space: O(n)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments