A linked list is a linear data structure, in which the elements are not stored at contiguous memory locations. The elements in a linked list are linked using pointers. In simple words, a linked list consists of nodes where each node contains a data field and a reference(link) to the next node in the list.
Types Of Linked List:
1. Singly Linked List
It is the simplest type of linked list in which every node contains some data and a pointer to the next node of the same data type.
The node contains a pointer to the next node means that the node stores the address of the next node in the sequence. A single linked list allows the traversal of data only in one way. Below is the image for the same:
Below is the structure of the singly linked list
C++
// Node of a singly linked list class Node { public : int data; // Pointer to next node in LL Node* next; }; |
Java
// Node of a singly linked list static class Node { int data; // Pointer to next node in LL Node next; }; // this code is contributed by shivani |
Python3
# Node of a singly linked list class Node: def __init__( self , data): self .data = data self . next = None |
C#
// Structure of a singly linked list Node public class Node { public int data; // Pointer to next node in LL public Node next; }; // this code is contributed by shivanisinghss2110 |
Javascript
// Node of a singly linked list class Node { constructor() { this .data=0; // Pointer to next node this .next= null ; } } // This code is contributed by SHUBHAMSINGH10 |
Creation and Traversal of Singly Linked List:
C++
// C++ program to illustrate creation // and traversal of Singly Linked List #include <bits/stdc++.h> using namespace std; // Structure of Node class Node { public : int data; Node* next; }; // Function to print the content of // linked list starting from the // given node void printList(Node* n) { // Iterate till n reaches NULL while (n != NULL) { // Print the data cout << n->data << " " ; n = n->next; } } // Driver Code int main() { Node* head = NULL; Node* second = NULL; Node* third = NULL; // Allocate 3 nodes in the heap head = new Node(); second = new Node(); third = new Node(); // Assign data in first node head->data = 1; // Link first node with second head->next = second; // Assign data to second node second->data = 2; second->next = third; // Assign data to third node third->data = 3; third->next = NULL; printList(head); return 0; } |
Java
// Java program to illustrate // creation and traversal of // Singly Linked List class GFG { // Structure of Node static class Node { int data; Node next; }; // Function to print the content of // linked list starting from the // given node static void printList(Node n) { // Iterate till n reaches null while (n != null ) { // Print the data System.out.print(n.data + " " ); n = n.next; } } // Driver Code public static void main(String[] args) { Node head = null ; Node second = null ; Node third = null ; // Allocate 3 nodes in // the heap head = new Node(); second = new Node(); third = new Node(); // Assign data in first // node head.data = 1 ; // Link first node with // second head.next = second; // Assign data to second // node second.data = 2 ; second.next = third; // Assign data to third // node third.data = 3 ; third.next = null ; printList(head); } } // This code is contributed by Princi Singh |
Python3
# structure of Node class Node: def __init__( self , data): self .data = data self . next = None class LinkedList: def __init__( self ): self .head = None self .last_node = None # function to add elements to linked list def append( self , data): # if linked list is empty then last_node will be none so in if condition head will be created if self .last_node is None : self .head = Node(data) self .last_node = self .head # adding node to the tail of linked list else : self .last_node. next = Node(data) self .last_node = self .last_node. next # function to print the content of linked list def display( self ): current = self .head # traversing the linked list while current is not None : # at each node printing its data print (current.data, end = ' ' ) # giving current next node current = current. next print () # Driver code if __name__ = = '__main__' : L = LinkedList() # adding elements to the linked list L.append( 1 ) L.append( 2 ) L.append( 3 ) # displaying elements of linked list L.display() |
C#
// C# program to illustrate // creation and traversal of // Singly Linked List using System; class GFG { // Structure of Node public class Node { public int data; public Node next; }; // Function to print the content of // linked list starting from the // given node static void printList(Node n) { // Iterate till n reaches null while (n != null ) { // Print the data Console.Write(n.data + " " ); n = n.next; } } // Driver Code public static void Main(String[] args) { Node head = null ; Node second = null ; Node third = null ; // Allocate 3 nodes in // the heap head = new Node(); second = new Node(); third = new Node(); // Assign data in first // node head.data = 1; // Link first node with // second head.next = second; // Assign data to second // node second.data = 2; second.next = third; // Assign data to third // node third.data = 3; third.next = null ; printList(head); } } // This code is contributed by Amit Katiyar |
Javascript
// JavaScript program to illustrate // creation and traversal of // Singly Linked List // Structure of Node class Node { constructor() { this .data=0; this .next= null ; } } // Function to print the content of // linked list starting from the // given node function printList(n) { // Iterate till n reaches null while (n != null ) { // Print the data document.write(n.data + " " ); n = n.next; } } // Driver Code let head = null ; let second = null ; let third = null ; // Allocate 3 nodes in // the heap head = new Node(); second = new Node(); third = new Node(); // Assign data in first // node head.data = 1; // Link first node with // second head.next = second; // Assign data to second // node second.data = 2; second.next = third; // Assign data to third // node third.data = 3; third.next = null ; printList(head); // This code is contributed by unknown2108 |
1 2 3
Time Complexity: O(N)
Auxiliary Space: O(N)
2. Doubly Linked List
A doubly linked list or a two-way linked list is a more complex type of linked list that contains a pointer to the next as well as the previous node in sequence.
Therefore, it contains three parts of data, a pointer to the next node, and a pointer to the previous node. This would enable us to traverse the list in the backward direction as well. Below is the image for the same:
Structure of Doubly Linked List:
C++
// Node of a doubly linked list struct Node { int data; // Pointer to next node in DLL struct Node* next; // Pointer to the previous node in DLL struct Node* prev; }; |
Java
// Doubly linked list // node static class Node { int data; // Pointer to next node in DLL Node next; // Pointer to the previous node in DLL Node prev; }; // This code is contributed by shivani |
Python3
# structure of Node class Node: def __init__( self , data): self .previous = None self .data = data self . next = None |
C#
// Doubly linked list // node public class Node { public int data; // Pointer to next node in DLL public Node next; // Pointer to the previous node in DLL public Node prev; }; // This code is contributed by shivanisinghss2110 |
Javascript
<script> // Class for Doubly Linked List var head; // head of list /* Doubly Linked list Node */ class Node { // Constructor to create a new node // next and prev is by default initialized as null constructor(val) { this .data = val; this .prev = null ; this .next = null ; } } // This code contributed by Susobhan Akhuli </script> |
Creation and Traversal of Doubly Linked List:
C++
// C++ program to illustrate creation // and traversal of Doubly Linked List #include <bits/stdc++.h> using namespace std; // Doubly linked list node class Node { public : int data; Node* next; Node* prev; }; // Function to push a new element in // the Doubly Linked List void push(Node** head_ref, int new_data) { // Allocate node Node* new_node = new Node(); // Put in the data new_node->data = new_data; // Make next of new node as // head and previous as NULL new_node->next = (*head_ref); new_node->prev = NULL; // Change prev of head node to // the new node if ((*head_ref) != NULL) (*head_ref)->prev = new_node; // Move the head to point to // the new node (*head_ref) = new_node; } // Function to traverse the Doubly LL // in the forward & backward direction void printList(Node* node) { Node* last; cout << "\nTraversal in forward" << " direction \n" ; while (node != NULL) { // Print the data cout << " " << node->data << " " ; last = node; node = node->next; } cout << "\nTraversal in reverse" << " direction \n" ; while (last != NULL) { // Print the data cout << " " << last->data << " " ; last = last->prev; } } // Driver Code int main() { // Start with the empty list Node* head = NULL; // Insert 6. // So linked list becomes 6->NULL push(&head, 6); // Insert 7 at the beginning. So // linked list becomes 7->6->NULL push(&head, 7); // Insert 1 at the beginning. So // linked list becomes 1->7->6->NULL push(&head, 1); cout << "Created DLL is: " ; printList(head); return 0; } |
Java
// Java program to illustrate // creation and traversal of // Doubly Linked List import java.util.*; class GFG { // Doubly linked list // node static class Node { int data; Node next; Node prev; }; static Node head_ref; // Function to push a new // element in the Doubly // Linked List static void push( int new_data) { // Allocate node Node new_node = new Node(); // Put in the data new_node.data = new_data; // Make next of new node as // head and previous as null new_node.next = head_ref; new_node.prev = null ; // Change prev of head node to // the new node if (head_ref != null ) head_ref.prev = new_node; // Move the head to point to // the new node head_ref = new_node; } // Function to traverse the // Doubly LL in the forward // & backward direction static void printList(Node node) { Node last = null ; System.out.print( "\nTraversal in forward" + " direction \n" ); while (node != null ) { // Print the data System.out.print( " " + node.data + " " ); last = node; node = node.next; } System.out.print( "\nTraversal in reverse" + " direction \n" ); while (last != null ) { // Print the data System.out.print( " " + last.data + " " ); last = last.prev; } } // Driver Code public static void main(String[] args) { // Start with the empty list head_ref = null ; // Insert 6. // So linked list becomes // 6.null push( 6 ); // Insert 7 at the beginning. // So linked list becomes // 7.6.null push( 7 ); // Insert 1 at the beginning. // So linked list becomes // 1.7.6.null push( 1 ); System.out.print( "Created DLL is: " ); printList(head_ref); } } // This code is contributed by Princi Singh |
Python3
# Python3 program to illustrate # creation and traversal of # Doubly Linked List # structure of Node class Node: def __init__( self , data): self .previous = None self .data = data self . next = None class DoublyLinkedList: def __init__( self ): self .head = None self .start_node = None self .last_node = None # function to add elements to doubly linked list def append( self , data): # is doubly linked list is empty then last_node will be none so in if condition head will be created if self .last_node is None : self .head = Node(data) self .last_node = self .head # adding node to the tail of doubly linked list else : new_node = Node(data) self .last_node. next = new_node new_node.previous = self .last_node new_node. next = None self .last_node = new_node # function to printing and traversing the content of doubly linked list from left to right and right to left def display( self , Type ): if Type = = 'Left_To_Right' : current = self .head while current is not None : print (current.data, end = ' ' ) current = current. next print () else : current = self .last_node while current is not None : print (current.data, end = ' ' ) current = current.previous print () # Driver code if __name__ = = '__main__' : L = DoublyLinkedList() L.append( 1 ) L.append( 2 ) L.append( 3 ) L.append( 4 ) L.display( 'Left_To_Right' ) L.display( 'Right_To_Left' ) |
C#
// C# program to illustrate // creation and traversal of // Doubly Linked List using System; class GFG { // Doubly linked list // node public class Node { public int data; public Node next; public Node prev; }; static Node head_ref; // Function to push a new // element in the Doubly // Linked List static void push( int new_data) { // Allocate node Node new_node = new Node(); // Put in the data new_node.data = new_data; // Make next of new node as // head and previous as null new_node.next = head_ref; new_node.prev = null ; // Change prev of head node to // the new node if (head_ref != null ) head_ref.prev = new_node; // Move the head to point to // the new node head_ref = new_node; } // Function to traverse the // Doubly LL in the forward // & backward direction static void printList(Node node) { Node last = null ; Console.Write( "\nTraversal in forward" + " direction \n" ); while (node != null ) { // Print the data Console.Write( " " + node.data + " " ); last = node; node = node.next; } Console.Write( "\nTraversal in reverse" + " direction \n" ); while (last != null ) { // Print the data Console.Write( " " + last.data + " " ); last = last.prev; } } // Driver Code public static void Main(String[] args) { // Start with the empty list head_ref = null ; // Insert 6. // So linked list becomes // 6.null push(6); // Insert 7 at the beginning. // So linked list becomes // 7.6.null push(7); // Insert 1 at the beginning. // So linked list becomes // 1.7.6.null push(1); Console.Write( "Created DLL is: " ); printList(head_ref); } } // This code is contributed by Amit Katiyar |
Javascript
<script> // Javascript program to illustrate creation // and traversal of Doubly Linked List // Class for Doubly Linked List var head; // head of list // Doubly Linked list Node class Node { // Constructor to create a new node // next and prev are by default initialized as null constructor(d) { this .data = d; this .next = null ; this .prev = null ; } } // Adding a node at the front of the list function push(new_data) { /* * 1. allocate node 2. put in the data */ var new_Node = new Node(new_data); /* 3. Make next of new node as head and previous as NULL */ new_Node.next = head; new_Node.prev = null ; /* 4. change prev of head node to new node */ if (head != null ) head.prev = new_Node; /* 5. move the head to point to the new node */ head = new_Node; } // This function prints contents of // linked list starting from the given node function printlist(node) { var last = null ; document.write( "<br/>Traversal in forward Direction<br/>" ); while (node != null ) { document.write(node.data + " " ); last = node; node = node.next; } document.write(); document.write( "<br/>Traversal in reverse direction<br/>" ); while (last != null ) { document.write(last.data + " " ); last = last.prev; } } // Driver program to test above functions // Start with the empty list // Insert 6. So linked list becomes 6->NULL push(6); // Insert 7 at the beginning. So // linked list becomes 7->6->NULL push(7); // Insert 1 at the beginning. So // linked list becomes 1->7->6->NULL push(1); document.write( "Created DLL is: " ); printlist(head); // This code is contributed by Susobhan Akhuli </script> |
Created DLL is: Traversal in forward direction 1 7 6 Traversal in reverse direction 6 7 1
Time Complexity:
The time complexity of the push() function is O(1) as it performs constant-time operations to insert a new node at the beginning of the doubly linked list. The time complexity of the printList() function is O(n) where n is the number of nodes in the doubly linked list. This is because it traverses the entire list twice, once in the forward direction and once in the backward direction. Therefore, the overall time complexity of the program is O(n).
Space Complexity:
The space complexity of the program is O(n) as it uses a doubly linked list to store the data, which requires n nodes. Additionally, it uses a constant amount of auxiliary space to create a new node in the push() function. Therefore, the overall space complexity of the program is O(n).
3. Circular Linked List
A circular linked list is that in which the last node contains the pointer to the first node of the list.
While traversing a circular linked list, we can begin at any node and traverse the list in any direction forward and backward until we reach the same node we started. Thus, a circular linked list has no beginning and no end. Below is the image for the same:
Below is the structure of the Circular Linked List:
C++
// Structure for a node class Node { public : int data; // Pointer to next node in CLL Node* next; }; |
Java
// Structure for a node static class Node { int data; // Pointer to next node in CLL Node next; }; // This code is contributed by shivanisinghss2110 |
Python3
# structure of Node class Node: def __init__( self , data): self .data = data self . next = None |
C#
// Structure for a node public class Node { public int data; // Pointer to next node in CLL public Node next; }; // This code is contributed by shivanisinghss2110 |
Javascript
<script> /* Circular Linked list Node */ class Node { // Constructor to create a new node // next and data are by default initialized as null and 0 respectively constructor() { this .data = 0; this .next = null ; } } // This code contributed by Susobhan Akhuli </script> |
Creation and Traversal of Circular Linked List:
C++
// C++ program to illustrate creation // and traversal of Circular LL #include <bits/stdc++.h> using namespace std; // Structure for a node class Node { public : int data; Node* next; }; // Function to insert a node at the // beginning of Circular LL void push(Node** head_ref, int data) { Node* ptr1 = new Node(); Node* temp = *head_ref; ptr1->data = data; ptr1->next = *head_ref; // If linked list is not NULL then // set the next of last node if (*head_ref != NULL) { while (temp->next != *head_ref) { temp = temp->next; } temp->next = ptr1; } // For the first node else ptr1->next = ptr1; *head_ref = ptr1; } // Function to print nodes in the // Circular Linked List void printList(Node* head) { Node* temp = head; if (head != NULL) { do { // Print the data cout << temp->data << " " ; temp = temp->next; } while (temp != head); } } // Driver Code int main() { // Initialize list as empty Node* head = NULL; // Created linked list will // be 11->2->56->12 push(&head, 12); push(&head, 56); push(&head, 2); push(&head, 11); cout << "Contents of Circular" << " Linked List\n " ; // Function call printList(head); return 0; } |
Java
// Java program to illustrate // creation and traversal of // Circular LL import java.util.*; class GFG { // Structure for a // node static class Node { int data; Node next; }; // Function to insert a node // at the beginning of Circular // LL static Node push(Node head_ref, int data) { Node ptr1 = new Node(); Node temp = head_ref; ptr1.data = data; ptr1.next = head_ref; // If linked list is not // null then set the next // of last node if (head_ref != null ) { while (temp.next != head_ref) { temp = temp.next; } temp.next = ptr1; } // For the first node else ptr1.next = ptr1; head_ref = ptr1; return head_ref; } // Function to print nodes in // the Circular Linked List static void printList(Node head) { Node temp = head; if (head != null ) { do { // Print the data System.out.print(temp.data + " " ); temp = temp.next; } while (temp != head); } } // Driver Code public static void main(String[] args) { // Initialize list as empty Node head = null ; // Created linked list will // be 11.2.56.12 head = push(head, 12 ); head = push(head, 56 ); head = push(head, 2 ); head = push(head, 11 ); System.out.print( "Contents of Circular" + " Linked List\n " ); // Function call printList(head); } } // This code is contributed by gauravrajput1 |
Python3
# Python3 program to illustrate # creation and traversal of # Circular LL # structure of Node class Node: def __init__( self , data): self .data = data self . next = None class CircularLinkedList: def __init__( self ): self .head = None self .last_node = None # function to add elements to circular linked list def append( self , data): # is circular linked list is empty then last_node will be none so in if condition head will be created if self .last_node is None : self .head = Node(data) self .last_node = self .head # adding node to the tail of circular linked list else : self .last_node. next = Node(data) self .last_node = self .last_node. next self .last_node. next = self .head # function to print the content of circular linked list def display( self ): current = self .head while current is not None : print (current.data, end = ' ' ) current = current. next if current = = self .head: break print () # Driver code if __name__ = = '__main__' : L = CircularLinkedList() L.append( 12 ) L.append( 56 ) L.append( 2 ) L.append( 11 ) # Function call L.display() |
C#
// C# program to illustrate // creation and traversal of // Circular LL using System; class GFG { // Structure for a // node public class Node { public int data; public Node next; }; // Function to insert a node // at the beginning of Circular // LL static Node push(Node head_ref, int data) { Node ptr1 = new Node(); Node temp = head_ref; ptr1.data = data; ptr1.next = head_ref; // If linked list is not // null then set the next // of last node if (head_ref != null ) { while (temp.next != head_ref) { temp = temp.next; } temp.next = ptr1; } // For the first node else ptr1.next = ptr1; head_ref = ptr1; return head_ref; } // Function to print nodes in // the Circular Linked List static void printList(Node head) { Node temp = head; if (head != null ) { do { // Print the data Console.Write(temp.data + " " ); temp = temp.next; } while (temp != head); } } // Driver Code public static void Main(String[] args) { // Initialize list as empty Node head = null ; // Created linked list will // be 11.2.56.12 head = push(head, 12); head = push(head, 56); head = push(head, 2); head = push(head, 11); Console.Write( "Contents of Circular " + "Linked List\n " ); // Function call printList(head); } } // This code is contributed by gauravrajput1 |
Javascript
<script> class Node { constructor() { this .data = 0; this .next = null ; } } function push(head, data) { // If linked list is NULL then if (head == null ) { // Creating a node dynamically. var temp = new Node(); // Assigning the data. temp.data = data; // Creatring the links. head = temp; head.next = head; } // If linked list is not NULL then else { // Creating a node dynamically. var temp = new Node(); // Assigning the data. temp.data = data; // Reset the links. temp.next = head.next; head.next = temp; } return head; } function printList(head) { var p; // If list is empty, return. if (head == null ) { document.write( "List is empty.<br>" ); return ; } // Pointing to first Node of the list. p = head.next; // Traversing the list. do { document.write(p.data + " " ); p = p.next; } while (p != head.next); } // Driver code var head = null ; // Created linked list will // be 11->2->56->12 head = push(head, 12); head = push(head, 56); head = push(head, 2); head = push(head, 11); document.write( "Contents of Circular Linked List<br>" ); printList(head); // This code contributed by Susobhan Akhuli </script> |
Contents of Circular Linked List 11 2 56 12
Time Complexity:
Insertion at the beginning of the circular linked list takes O(1) time complexity.
Traversing and printing all nodes in the circular linked list takes O(n) time complexity where n is the number of nodes in the linked list.
Therefore, the overall time complexity of the program is O(n).
Auxiliary Space:
The space required by the program depends on the number of nodes in the circular linked list.
In the worst-case scenario, when there are n nodes, the space complexity of the program will be O(n) as n new nodes will be created to store the data.
Additionally, some extra space is required for the temporary variables and the function calls.
Therefore, the auxiliary space complexity of the program is O(n).
4. Doubly Circular linked list
A Doubly Circular linked list or a circular two-way linked list is a more complex type of linked list that contains a pointer to the next as well as the previous node in the sequence. The difference between the doubly linked and circular doubly list is the same as that between a singly linked list and a circular linked list. The circular doubly linked list does not contain null in the previous field of the first node. Below is the image for the same:
Below is the structure of the Doubly Circular Linked List:
C++
// Node of doubly circular linked list struct Node { int data; // Pointer to next node in DCLL struct Node* next; // Pointer to the previous node in DCLL struct Node* prev; }; |
Java
// Structure of a Node static class Node { int data; // Pointer to next node in DCLL Node next; // Pointer to the previous node in DCLL Node prev; }; //this code is contributed by shivanisinghss2110 |
Python3
# structure of Node class Node: def __init__( self , data): self .previous = None self .data = data self . next = None |
C#
// Structure of a Node public class Node { public int data; // Pointer to next node in DCLL public Node next; // Pointer to the previous node in DCLL public Node prev; }; // This code is contributed by shivanisinghss2110 |
Javascript
<script> // head list var start = null ; // class of a Node class Node { constructor() { this .data = 0; this .next = null ; this .prev = null ; } } // This code is contributed by Susobhan Akhuli </script> |
Creation and Traversal of Doubly Circular Linked List:
C++
// C++ program to illustrate creation // & traversal of Doubly Circular LL #include <bits/stdc++.h> using namespace std; // Structure of a Node struct Node { int data; struct Node* next; struct Node* prev; }; // Function to insert Node at // the beginning of the List void insertBegin( struct Node** start, int value) { // If the list is empty if (*start == NULL) { struct Node* new_node = new Node; new_node->data = value; new_node->next = new_node->prev = new_node; *start = new_node; return ; } // Pointer points to last Node struct Node* last = (*start)->prev; struct Node* new_node = new Node; // Inserting the data new_node->data = value; // Update the previous and // next of new node new_node->next = *start; new_node->prev = last; // Update next and previous // pointers of start & last last->next = (*start)->prev = new_node; // Update start pointer *start = new_node; } // Function to traverse the circular // doubly linked list void display( struct Node* start) { struct Node* temp = start; printf ( "\nTraversal in" " forward direction \n" ); while (temp->next != start) { printf ( "%d " , temp->data); temp = temp->next; } printf ( "%d " , temp->data); printf ( "\nTraversal in " "reverse direction \n" ); Node* last = start->prev; temp = last; while (temp->prev != last) { // Print the data printf ( "%d " , temp->data); temp = temp->prev; } printf ( "%d " , temp->data); } // Driver Code int main() { // Start with the empty list struct Node* start = NULL; // Insert 5 // So linked list becomes 5->NULL insertBegin(&start, 5); // Insert 4 at the beginning // So linked list becomes 4->5 insertBegin(&start, 4); // Insert 7 at the end // So linked list becomes 7->4->5 insertBegin(&start, 7); printf ( "Created circular doubly" " linked list is: " ); display(start); return 0; } |
Java
// Java program to illustrate creation // & traversal of Doubly Circular LL import java.util.*; class GFG { // Structure of a Node static class Node { int data; Node next; Node prev; }; // Start with the empty list static Node start = null ; // Function to insert Node at // the beginning of the List static void insertBegin( int value) { // If the list is empty if (start == null ) { Node new_node = new Node(); new_node.data = value; new_node.next = new_node.prev = new_node; start = new_node; return ; } // Pointer points to last Node Node last = (start).prev; Node new_node = new Node(); // Inserting the data new_node.data = value; // Update the previous and // next of new node new_node.next = start; new_node.prev = last; // Update next and previous // pointers of start & last last.next = (start).prev = new_node; // Update start pointer start = new_node; } // Function to traverse the circular // doubly linked list static void display() { Node temp = start; System.out.printf( "\nTraversal in" + " forward direction \n" ); while (temp.next != start) { System.out.printf( "%d " , temp.data); temp = temp.next; } System.out.printf( "%d " , temp.data); System.out.printf( "\nTraversal in " + "reverse direction \n" ); Node last = start.prev; temp = last; while (temp.prev != last) { // Print the data System.out.printf( "%d " , temp.data); temp = temp.prev; } System.out.printf( "%d " , temp.data); } // Driver Code public static void main(String[] args) { // Insert 5 // So linked list becomes 5.null insertBegin( 5 ); // Insert 4 at the beginning // So linked list becomes 4.5 insertBegin( 4 ); // Insert 7 at the end // So linked list becomes 7.4.5 insertBegin( 7 ); System.out.printf( "Created circular doubly" + " linked list is: " ); display(); } } // This code is contributed by shikhasingrajput |
Python3
# Python3 program to illustrate creation # & traversal of Doubly Circular LL # structure of Node class Node: def __init__( self , data): self .previous = None self .data = data self . next = None class DoublyLinkedList: def __init__( self ): self .head = None self .start_node = None self .last_node = None # function to add elements to doubly linked list def append( self , data): # is doubly linked list is empty then last_node will be none so in if condition head will be created if self .last_node is None : self .head = Node(data) self .last_node = self .head # adding node to the tail of doubly linked list else : new_node = Node(data) self .last_node. next = new_node new_node.previous = self .last_node new_node. next = self .head self .head.previous = new_node self .last_node = new_node # function to print the content of doubly linked list def display( self , Type = 'Left_To_Right' ): if Type = = 'Left_To_Right' : current = self .head while current. next is not None : print (current.data, end = ' ' ) current = current. next if current = = self .head: break print () else : current = self .last_node while current.previous is not None : print (current.data, end = ' ' ) current = current.previous if current = = self .last_node. next : print ( self .last_node. next .data, end = ' ' ) break print () if __name__ = = '__main__' : L = DoublyLinkedList() L.append( 1 ) L.append( 2 ) L.append( 3 ) L.append( 4 ) L.display( 'Left_To_Right' ) L.display( 'Right_To_Left' ) |
C#
// C# program to illustrate creation // & traversal of Doubly Circular LL using System; public class GFG { // Structure of a Node public class Node { public int data; public Node next; public Node prev; }; // Start with the empty list static Node start = null ; // Function to insert Node at // the beginning of the List static void insertBegin( int value) { Node new_node = new Node(); // If the list is empty if (start == null ) { new_node.data = value; new_node.next = new_node.prev = new_node; start = new_node; return ; } // Pointer points to last Node Node last = (start).prev; // Inserting the data new_node.data = value; // Update the previous and // next of new node new_node.next = start; new_node.prev = last; // Update next and previous // pointers of start & last last.next = (start).prev = new_node; // Update start pointer start = new_node; } // Function to traverse the circular // doubly linked list static void display() { Node temp = start; Console.Write( "\nTraversal in" + " forward direction \n" ); while (temp.next != start) { Console.Write(temp.data + " " ); temp = temp.next; } Console.Write(temp.data + " " ); Console.Write( "\nTraversal in " + "reverse direction \n" ); Node last = start.prev; temp = last; while (temp.prev != last) { // Print the data Console.Write(temp.data + " " ); temp = temp.prev; } Console.Write(temp.data + " " ); } // Driver Code public static void Main(String[] args) { // Insert 5 // So linked list becomes 5.null insertBegin(5); // Insert 4 at the beginning // So linked list becomes 4.5 insertBegin(4); // Insert 7 at the end // So linked list becomes 7.4.5 insertBegin(7); Console.Write( "Created circular doubly" + " linked list is: " ); display(); } } // This code is contributed by 29AjayKumar |
Javascript
<script> // JavaScript program to illustrate creation // & traversal of Doubly Circular LL var start = null ; // Structure of a Node class Node { constructor() { this .data = 0; this .next = null ; this .prev = null ; } } // Function to insert at the end function insertEnd(value) { var new_node; // If the list is empty, create a single node // circular and doubly list if (start == null ) { new_node = new Node(); new_node.data = value; new_node.next = new_node.prev = new_node; start = new_node; return ; } // If list is not empty // Find last node var last = start.prev; // Create Node dynamically new_node = new Node(); new_node.data = value; // Start is going to be next of new_node new_node.next = start; // Make new node previous of start start.prev = new_node; // Make last previous of new node new_node.prev = last; // Make new node next of old last last.next = new_node; } // Function to insert Node at the beginning // of the List, function insertBegin(value) { // Pointer points to last Node var last = start.prev; var new_node = new Node(); new_node.data = value; // Inserting the data // setting up previous and next of new node new_node.next = start; new_node.prev = last; // Update next and previous pointers of start // and last. last.next = start.prev = new_node; // Update start pointer start = new_node; } function display() { var temp = start; document.write( "<br>Traversal in forward direction <br>" ); while (temp.next != start) { document.write(temp.data + " " ); temp = temp.next; } document.write(temp.data); document.write( "<br>Traversal in reverse direction <br>" ); var last = start.prev; temp = last; while (temp.prev != last) { document.write(temp.data + " " ); temp = temp.prev; } document.write(temp.data); } /* Driver code*/ // Start with the empty list var start = null ; // Insert 5. So linked list becomes 5.null insertEnd(5); // Insert 4 at the beginning. So linked // list becomes 4.5 insertBegin(4); // Insert 7 at the end. So linked list // becomes 7.4.5.null insertBegin(7); document.write( "Created circular doubly linked list is: " ); display(); // This code is contributed by Susobhan Akhuli </script> |
Created circular doubly linked list is: Traversal in forward direction 7 4 5 Traversal in reverse direction 5 4 7
Time Complexity:
Insertion at the beginning of a doubly circular linked list takes O(1) time complexity.
Traversing the entire doubly circular linked list takes O(n) time complexity, where n is the number of nodes in the linked list.
Therefore, the overall time complexity of the program is O(n).
Auxiliary space:
The program uses a constant amount of auxiliary space, i.e., O(1), to create and traverse the doubly circular linked list.
The space required to store the linked list grows linearly with the number of nodes in the linked list.
Therefore, the overall auxiliary space complexity of the program is O(1).
5. Header Linked List:
A header linked list is a special type of linked list that contains a header node at the beginning of the list.
So, in a header linked list START will not point to the first node of the list but START will contain the address of the header node. Below is the image for Grounded Header Linked List:
Below is the Structure of the Grounded Header Linked List:
C++
// Structure of the list struct link { int info; // Pointer to the next node struct link* next; }; |
Java
// Structure of the list static class link { int info; // Pointer to the next node link next; }; // this code is contributed by shivanisinghss2110 |
Python3
# structure of Node class Node: def __init__( self , data): self .data = data self . next = None |
C#
// Structure of the list public class link { public int info; // Pointer to the next node public link next; }; // this code is contributed by shivanisinghss2110 |
Javascript
<script> // Class for a node class Node { // Constructor to create a new node constructor() { this .data = 0; // Pointer to next node this .next = null ; } } // This code contributed by Susobhan Akhuli </script> |
Creation and Traversal of Header Linked List:
C++
// C++ program to illustrate creation // and traversal of Header Linked List #include <bits/stdc++.h> // Structure of the list struct link { int info; struct link* next; }; // Empty List struct link* start = NULL; // Function to create header of the // header linked list struct link* create_header_list( int data) { // Create a new node struct link *new_node, *node; new_node = ( struct link*) malloc ( sizeof ( struct link)); new_node->info = data; new_node->next = NULL; // If it is the first node if (start == NULL) { // Initialize the start start = ( struct link*) malloc ( sizeof ( struct link)); start->next = new_node; } else { // Insert the node in the end node = start; while (node->next != NULL) { node = node->next; } node->next = new_node; } return start; } // Function to display the // header linked list struct link* display() { struct link* node; node = start; node = node->next; // Traverse until node is // not NULL while (node != NULL) { // Print the data printf ( "%d " , node->info); node = node->next; } printf ( "\n" ); // Return the start pointer return start; } // Driver Code int main() { // Create the list create_header_list(11); create_header_list(12); create_header_list(13); // Print the list printf ( "List After inserting" " 3 elements:\n" ); display(); create_header_list(14); create_header_list(15); // Print the list printf ( "List After inserting" " 2 more elements:\n" ); display(); return 0; } |
Java
// Java program to illustrate creation // and traversal of Header Linked List class GFG { // Structure of the list static class link { int info; link next; }; // Empty List static link start = null ; // Function to create header of the // header linked list static link create_header_list( int data) { // Create a new node link new_node, node; new_node = new link(); new_node.info = data; new_node.next = null ; // If it is the first node if (start == null ) { // Initialize the start start = new link(); start.next = new_node; } else { // Insert the node in the end node = start; while (node.next != null ) { node = node.next; } node.next = new_node; } return start; } // Function to display the // header linked list static link display() { link node; node = start; node = node.next; // Traverse until node is // not null while (node != null ) { // Print the data System.out.printf( "%d " , node.info); node = node.next; } System.out.printf( "\n" ); // Return the start pointer return start; } // Driver Code public static void main(String[] args) { // Create the list create_header_list( 11 ); create_header_list( 12 ); create_header_list( 13 ); // Print the list System.out.printf( "List After inserting" + " 3 elements:\n" ); display(); create_header_list( 14 ); create_header_list( 15 ); // Print the list System.out.printf( "List After inserting" + " 2 more elements:\n" ); display(); } } // This code is contributed by 29AjayKumar |
Python3
# Python3 program to illustrate creation # and traversal of Header Linked List # structure of Node class Node: def __init__( self , data): self .data = data self . next = None class LinkedList: def __init__( self ): self .head = Node( 0 ) self .last_node = self .head # function to add elements to header linked list def append( self , data): self .last_node. next = Node(data) self .last_node = self .last_node. next # function to print the content of header linked list def display( self ): current = self .head. next # traversing the header linked list while current is not None : # at each node printing its data print (current.data, end = ' ' ) # giving current next node current = current. next # print(self.head.data) print () # Driver code if __name__ = = '__main__' : L = LinkedList() # adding elements to the header linked list L.append( 1 ) L.append( 2 ) L.append( 3 ) L.append( 4 ) # displaying elements of header linked list L.display() |
C#
// C# program to illustrate creation // and traversal of Header Linked List using System; public class GFG { // Structure of the list public class link { public int info; public link next; }; // Empty List static link start = null ; // Function to create header of the // header linked list static link create_header_list( int data) { // Create a new node link new_node, node; new_node = new link(); new_node.info = data; new_node.next = null ; // If it is the first node if (start == null ) { // Initialize the start start = new link(); start.next = new_node; } else { // Insert the node in the end node = start; while (node.next != null ) { node = node.next; } node.next = new_node; } return start; } // Function to display the // header linked list static link display() { link node; node = start; node = node.next; // Traverse until node is // not null while (node != null ) { // Print the data Console.Write( "{0} " , node.info); node = node.next; } Console.Write( "\n" ); // Return the start pointer return start; } // Driver Code public static void Main(String[] args) { // Create the list create_header_list(11); create_header_list(12); create_header_list(13); // Print the list Console.Write( "List After inserting" + " 3 elements:\n" ); display(); create_header_list(14); create_header_list(15); // Print the list Console.Write( "List After inserting" + " 2 more elements:\n" ); display(); } } // This code is contributed by 29AjayKumar |
Javascript
<script> // JavaScript program to illustrate creation // and traversal of Header Linked List // Structure of the list class Link { constructor(info, next) { this .info = info; this .next = next; } } // Empty List let start = null ; // Function to create header of the // header linked list function createHeaderList(data) { // Create a new node let newNode = new Link(data, null ); // If it is the first node if (start == null ) { // Initialize the start start = new Link( null , newNode); } else { // Insert the node in the end let node = start; while (node.next != null ) { node = node.next; } node.next = newNode; } return start; } // Function to display the // header linked list function display() { let node = start; node = node.next; // Traverse until node is // not NULL while (node != null ) { // Print the data document.write(node.info+ " " ); node = node.next; } // Return the start pointer return start; } // Create the list createHeaderList(11); createHeaderList(12); createHeaderList(13); // Print the list document.write( "List After inserting 3 elements:<br>" ); display(); createHeaderList(14); createHeaderList(15); // Print the list document.write( "<br>List After inserting 2 more elements:<br>" ); display(); // This code contributed by Susobhan Akhuli </script> |
List After inserting 3 elements: 11 12 13 List After inserting 2 more elements: 11 12 13 14 15
Time Complexity:
The time complexity of creating a new node and inserting it at the end of the linked list is O(1).
The time complexity of traversing the linked list to display its contents is O(n), where n is the number of nodes in the list.
Therefore, the overall time complexity of creating and traversing a header linked list is O(n).
Auxiliary Space:
The space complexity of the program is O(n), where n is the number of nodes in the linked list.
This is because we are creating n nodes, each with a fixed amount of space required for storing the node information and a pointer to the next node.
Therefore, the overall auxiliary space complexity of the program is O(n).
Additional Types:
- Multiply Linked List: Multiply Linked List is a data structure in which each node of the list contains multiple pointers. It is a type of linked list which has multiple linked lists in one list. Each node has multiple pointers which can point to different nodes in the list and can also point to nodes outside the list. The data stored in a Multiply Linked List can be easily accessed and modified, making it a very efficient data structure. The nodes in a Multiply Linked List can be accessed in any order, making it suitable for applications such as graphs, trees, and cyclic lists.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!