Saturday, November 23, 2024
Google search engine
HomeData Modelling & AITime taken by two persons to meet on a circular track

Time taken by two persons to meet on a circular track

Given integers L, S1 and S2 where L is the length of a circular track in meters, S1 and S2 are the speeds of two persons in kilometers/hour moving in the same direction on the given track starting from the same starting point. The task is to find the following: 
 

  • The time after which they will meet for the first time.
  • The time at which there are going to meet at the starting point.

Examples: 
 

Input: L = 30, S1 = 5, S2 = 2 
Output: Met first time after 10 hrs 
Met at starting point after 30 hrs
Input: L = 10, S1 = 1, S2 = 2 
Output: Met first time after 10 hrs 
Met at starting point after 10 hrs 
 

 

Approach: 
 

  • For calculating the time at which they will first meet. 
    • First of all, calculate the Relative speed i.e. S1 – S2.
    • Then use the formula, Time = Distance / Relative speed.
  • For calculating the time at which they will again meet at starting point. 
    • First of all, calculate the time i.e. T1 and T2 which represent the time taken by both to cover 1 round of circular track by using the formula Time = Length of track / Speed.
    • Then calculate the LCM to know the time they will again meet at starting point.

Below is the implementation of the above approach: 
 

C++




// C++ implementation of above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the time when both the
// persons will meet at the starting point
int startingPoint(int Length, int Speed1, int Speed2)
{
    int result1 = 0, result2 = 0;
 
    // Time to cover 1 round by both
    int time1 = Length / Speed1;
    int time2 = Length / Speed2;
 
    result1 = __gcd(time1, time2);
 
    // Finding LCM to get the meeting point
    result2 = time1 * time2 / (result1);
 
    return result2;
}
 
// Function to return the time when both
// the persons will meet for the first time
float firstTime(int Length, int Speed1, int Speed2)
{
    float result = 0;
 
    int relativeSpeed = abs(Speed1 - Speed2);
 
    result = ((float)Length / relativeSpeed);
 
    return result;
}
 
// Driver Code
int main()
{
    int L = 30, S1 = 5, S2 = 2;
 
    // Calling function
    float first_Time = firstTime(L, S1, S2);
    int starting_Point = startingPoint(L, S1, S2);
 
    cout << "Met first time after "
         << first_Time << " hrs" << endl;
    cout << "Met at starting point after "
         << starting_Point << " hrs" << endl;
 
    return 0;
}


Java




// Java implementation of above approach
public class GFG {
 
// Function to return the time when both the
// persons will meet at the starting point
    static int startingPoint(int Length, int Speed1, int Speed2) {
        int result1 = 0, result2 = 0;
 
        // Time to cover 1 round by both
        int time1 = Length / Speed1;
        int time2 = Length / Speed2;
 
        result1 = __gcd(time1, time2);
 
        // Finding LCM to get the meeting point
        result2 = time1 * time2 / (result1);
 
        return result2;
    }
 
    static int __gcd(int a, int b) {
        if (b == 0) {
            return a;
        }
        return __gcd(b, a % b);
 
    }
// Function to return the time when both
// the persons will meet for the first time
 
    static float firstTime(int Length, int Speed1, int Speed2) {
        float result = 0;
 
        int relativeSpeed = Math.abs(Speed1 - Speed2);
 
        result = ((float) Length / relativeSpeed);
 
        return result;
    }
 
// Driver Code
    public static void main(String[] args) {
        int L = 30, S1 = 5, S2 = 2;
 
        // Calling function
        float first_Time = firstTime(L, S1, S2);
        int starting_Point = startingPoint(L, S1, S2);
 
        System.out.println("Met first time after "
                + first_Time + " hrs");
        System.out.println("Met at starting point after "
                + starting_Point + " hrs");
 
    }
}


Python3




# Python 3 implementation of
# above approach
 
# import gcd() from math lib
from math import gcd
 
# Function to return the time when both the
# persons will meet at the starting point
def startingPoint(Length, Speed1, Speed2) :
 
    result1 = 0
    result2 = 0
 
    # Time to cover 1 round by both
    time1 = Length // Speed1
    time2 = Length // Speed2
 
    result1 = gcd(time1, time2)
 
    # Finding LCM to get the meeting point
    result2 = time1 * time2 // (result1)
 
    return result2
 
# Function to return the time when both
# the persons will meet for the first time
def firstTime(Length, Speed1, Speed2) :
 
    result = 0
 
    relativeSpeed = abs(Speed1 - Speed2)
 
    result = Length / relativeSpeed
 
    return result
 
# Driver Code
if __name__ == "__main__" :
     
    L = 30
    S1 = 5
    S2 = 2
 
    # Calling function
    first_Time = firstTime(L, S1, S2)
    starting_Point = startingPoint(L, S1, S2)
 
    print("Met first time after", first_Time, "hrs")
    print("Met at starting point after",
                  starting_Point, "hrs")
 
# This code is contributed by Ryuga


C#




// C# implementation of above approach
using System;
 
public class GFG {
  
// Function to return the time when both the
// persons will meet at the starting point
    static int startingPoint(int Length, int Speed1, int Speed2) {
        int result1 = 0, result2 = 0;
  
        // Time to cover 1 round by both
        int time1 = Length / Speed1;
        int time2 = Length / Speed2;
  
        result1 = __gcd(time1, time2);
  
        // Finding LCM to get the meeting point
        result2 = time1 * time2 / (result1);
  
        return result2;
    }
  
    static int __gcd(int a, int b) {
        if (b == 0) {
            return a;
        }
        return __gcd(b, a % b);
  
    }
// Function to return the time when both
// the persons will meet for the first time
  
    static float firstTime(int Length, int Speed1, int Speed2) {
        float result = 0;
  
        int relativeSpeed = Math.Abs(Speed1 - Speed2);
  
        result = ((float) Length / relativeSpeed);
  
        return result;
    }
  
// Driver Code
    public static void Main() {
        int L = 30, S1 = 5, S2 = 2;
  
        // Calling function
        float first_Time = firstTime(L, S1, S2);
        int starting_Point = startingPoint(L, S1, S2);
  
        Console.WriteLine("Met first time after "
                + first_Time + " hrs");
        Console.WriteLine("Met at starting point after "
                + starting_Point + " hrs");
  
    }
}
/*This code is contributed by 29AjayKumar*/


PHP




<?php
// PHP implementation of above approach
 
function gcd ($a, $b)
{
    return $b ? gcd($b, $a % $b) : $a;
}
 
// Function to return the time
// when both the persons will
// meet at the starting point
function startingPoint($Length, $Speed1,
                                $Speed2)
{
    $result1 = 0;
    $result2 = 0;
 
    // Time to cover 1 round by both
    $time1 = $Length / $Speed1;
    $time2 = $Length / $Speed2;
 
    $result1 = gcd($time1, $time2);
 
    // Finding LCM to get the
    // meeting point
    $result2 = $time1 * $time2 / ($result1);
 
    return $result2;
}
 
// Function to return the time when both
// the persons will meet for the first time
function firstTime($Length, $Speed1, $Speed2)
{
    $result = 0;
 
    $relativeSpeed = abs($Speed1 - $Speed2);
 
    $result = ((float)$Length /
                      $relativeSpeed);
 
    return $result;
}
 
// Driver Code
$L = 30;
$S1 = 5;
$S2 = 2;
 
// Calling function
$first_Time = firstTime($L, $S1, $S2);
$starting_Point = startingPoint($L, $S1, $S2);
 
echo "Met first time after ".
    $first_Time ." hrs" ."\n";
echo "Met at starting point after ".
    $starting_Point . " hrs" ."\n";
 
// This code is contributed
// by ChitraNayal
?>


Javascript




<script>
// javascript implementation of above approach
 
    // Function to return the time when both the
    // persons will meet at the starting point
    function startingPoint(Length , Speed1 , Speed2)
    {
        var result1 = 0, result2 = 0;
 
        // Time to cover 1 round by both
        var time1 = Length / Speed1;
        var time2 = Length / Speed2;
 
        result1 = __gcd(time1, time2);
 
        // Finding LCM to get the meeting point
        result2 = time1 * time2 / (result1);
 
        return result2;
    }
 
    function __gcd(a , b)
    {
        if (b == 0)
        {
            return a;
        }
        return __gcd(b, a % b);
 
    }
     
    // Function to return the time when both
    // the persons will meet for the first time
    function firstTime(Length , Speed1 , Speed2)
    {
        var result = 0;
        var relativeSpeed = Math.abs(Speed1 - Speed2);
        result = ( Length / relativeSpeed);
        return result;
    }
 
    // Driver Code   
    var L = 30, S1 = 5, S2 = 2;
 
        // Calling function
        var first_Time = firstTime(L, S1, S2);
        var starting_Point = startingPoint(L, S1, S2);
 
        document.write("Met first time after " + first_Time + " hrs<br/>");
        document.write("Met at starting point after " + starting_Point + " hrs");
 
// This code is contributed by todaysgaurav
</script>


Output: 

Met first time after 10 hrs
Met at starting point after 30 hrs

 

Time Complexity: O(log(max(t1,t2)), where t1, t2 are time corresponding to given distance and speeds.

Auxiliary Space: O(1), since no extra space has been taken.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments