Given a “2 x n” board and tiles of size “2 x 1”, count the number of ways to tile the given board using the 2 x 1 tiles. A tile can either be placed horizontally i.e., as a 1 x 2 tile or vertically i.e., as 2 x 1 tile.
Examples:
Input: n = 4
Output: 5
Explanation:
For a 2 x 4 board, there are 5 ways
- All 4 vertical (1 way)
- All 4 horizontal (1 way)
- 2 vertical and 2 horizontal (3 ways)
Input: n = 3
Output: 3
Explanation:
We need 3 tiles to tile the board of size 2 x 3.
We can tile the board using following ways
- Place all 3 tiles vertically.
- Place 1 tile vertically and remaining 2 tiles horizontally (2 ways)
Implementation –
Let “count(n)” be the count of ways to place tiles on a “2 x n” grid, we have following two ways to place first tile.
1) If we place first tile vertically, the problem reduces to “count(n-1)”
2) If we place first tile horizontally, we have to place second tile also horizontally. So the problem reduces to “count(n-2)”
Therefore, count(n) can be written as below.
count(n) = n if n = 1 or n = 2 count(n) = count(n-1) + count(n-2)
Here’s the code for the above approach:
C++
// C++ program to count the // no. of ways to place 2*1 size // tiles in 2*n size board. #include <iostream> using namespace std; int getNoOfWays( int n) { // Base case if (n <= 2) return n; return getNoOfWays(n - 1) + getNoOfWays(n - 2); } // Driver Function int main() { cout << getNoOfWays(4) << endl; cout << getNoOfWays(3); return 0; } |
Java
/* Java program to count the no of ways to place 2*1 size tiles in 2*n size board. */ import java.io.*; class GFG { static int getNoOfWays( int n) { // Base case if (n <= 2 ) { return n; } return getNoOfWays(n - 1 ) + getNoOfWays(n - 2 ); } // Driver Function public static void main(String[] args) { System.out.println(getNoOfWays( 4 )); System.out.println(getNoOfWays( 3 )); } } // This code is contributed by ashwinaditya21. |
Python3
# Python3 program to count the # no. of ways to place 2*1 size # tiles in 2*n size board. def getNoOfWays(n): # Base case if n < = 2 : return n return getNoOfWays(n - 1 ) + getNoOfWays(n - 2 ) # Driver Code print (getNoOfWays( 4 )) print (getNoOfWays( 3 )) # This code is contributed by Kevin Joshi |
C#
// C# program to implement // the above approach using System; class GFG { static int getNoOfWays( int n) { // Base case if (n <= 2) { return n; } return getNoOfWays(n - 1) + getNoOfWays(n - 2); } // Driver Code public static void Main() { Console.WriteLine(getNoOfWays(4)); Console.WriteLine(getNoOfWays(3)); } } // This code is contributed by code_hunt. |
Javascript
<script> // JavaScript program to count the // no. of ways to place 2*1 size // tiles in 2*n size board. function getNoOfWays(n) { // Base case if (n <= 2) return n; return getNoOfWays(n - 1) + getNoOfWays(n - 2); } // Driver Function document.write(getNoOfWays(4)); document.write(getNoOfWays(3)); // This code is contributed by shinjanpatra </script> |
5 3
Time Complexity: O(2^n)
Auxiliary Space: O(1)
The above recurrence is nothing but Fibonacci Number expression. We can find n’th Fibonacci number in O(Log n) time, see below for all method to find n’th Fibonacci Number.
https://youtu.be/NyICqRtePVs
https://youtu.be/U9ylW7NsHlI
Different methods for n’th Fibonacci Number.
Count the number of ways to tile the floor of size n x m using 1 x m size tiles
This article is contributed by Saurabh Jain. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!