Saturday, November 16, 2024
Google search engine
HomeData Modelling & AISum of minimum value of x and y satisfying the equation ax...

Sum of minimum value of x and y satisfying the equation ax + by = c

Time ComGiven three integers a, b, and c representing a linear equation of the form ax + by = c, the task is to find the solution (x, y) of the given equation such that (x + y) is minimized. If no solution exists for the above equation then print “-1”
Note: x and y are non negative integers.

Examples: 

Input: a = 2, b = 2, c = 0 
Output:
Explanation: 
The given equation is 2x + 2y = 0. 
Therefore, x = 0 and y = 0 is the required solution with minimum value of (x + y).

Input: a = 2, b = 2, c = 1 
Output: -1 
Explanation: 
The given equation is 2x + 2y = 1. 
No solution exists for the given equation for positive values of x and y. 
 

Approach: To solve the above problem, find any solution say (x, y) of the given Linear Diophantine Equation and then accordingly find value of x and to minimised the sum.
Below is the solution (x’, y’) of the given equation: 

x' = x + k * \frac{b}{g}               [Tex]y’ = y – k * \frac{a}{g}               [/Tex]
 

where g is gcd(a, b) and k is any integer. 

x' + y' = x + y + k*(\frac{b}{g} - \frac{a}{g})               [Tex]x’ + y’ = x + y + k*\frac{b-a}{g}         [/Tex]

From the above equation we observe that: 

  1. If a is less than b, we need to select the smallest possible value of K.
  2. Else, if a is greater than b, we need to select the largest possible value of K.
  3. If a = b, all solutions will have the same sum (x + y).

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the gcd of a & b
// by Euclid's method
 
// x and y store solution of
// equation ax + by = g
int gcd(int a, int b, int* x, int* y)
{
 
    if (b == 0) {
        *x = 1;
        *y = 0;
        return a;
    }
    int x1, y1;
    int store_gcd = gcd(b, a % b,
                        &x1, &y1);
 
    // Euclidean Algorithm
    *x = y1;
    *y = x1 - y1 * (a / b);
 
    // store_gcd returns
    // the gcd of a and b
    return store_gcd;
}
 
// Function to find any
// possible solution
int possible_solution(int a, int b,
                    int c, int* x0,
                    int* y0, int* g)
{
    *g = gcd(fabs(a), fabs(b), x0, y0);
 
    // Condition if solution
    // does not exists
    if (c % *g) {
        return 0;
    }
 
    *x0 *= c / *g;
    *y0 *= c / *g;
 
    // Adjusting the sign
    // of x0 and y0
    if (a < 0)
        *x0 *= -1;
    if (b < 0)
        *y0 *= -1;
 
    return 1;
}
 
// Function to shift solution
void shift_solution(int* x, int* y,
                    int a, int b,
                    int shift_var)
{
 
    // Shifting to obtain
    // another solution
    *x += shift_var * b;
    *y -= shift_var * a;
}
 
// Function to find minimum
// value of x and y
int find_min_sum(int a, int b, int c)
{
    int x, y, g;
 
    // g is the gcd of a and b
    if (!possible_solution(a, b, c,
                        &x, &y, &g))
        return -1;
 
    a /= g;
    b /= g;
 
    // Store sign of a and b
    int sign_a = a > 0 ? +1 : -1;
    int sign_b = b > 0 ? +1 : -1;
 
    shift_solution(&x, &y, a, b, -x / b);
 
    // If x is less than 0, then
    // shift solution
    if (x < 0)
        shift_solution(&x, &y, a, b, sign_b);
 
    int minx1 = x;
 
    shift_solution(&x, &y, a, b, y / a);
 
    // If y is less than 0, then
    // shift solution
    if (y < 0)
        shift_solution(&x, &y, a, b, -sign_a);
 
    int minx2 = x;
 
    if (minx2 > x)
        swap(minx2, x);
    int minx = max(minx1, minx2);
 
    // Find intersection such
    // that both x and y are positive
 
    if (minx > x)
        return -1;
 
    // miny is value of y
    // corresponding to minx
    int miny = (c - a * x) / b;
 
    // Returns minimum value of x+y
    return (miny + minx);
}
 
// Driver Code
int main()
{
    // Given a, b, and c
    int a = 2, b = 2, c = 0;
 
    // Function Call
    cout << find_min_sum(a, b, c)
        << "\n";
 
    return 0;
}


Java




// Java program for the above approach
import java.lang.*;
class GFG{
     
public static int x = 0, y = 0,
                 x1 = 0, y1 = 0;
public static int x0 = 0, y0 = 0,
                   g = 0;
 
// Function to find the gcd of a & b
// by Euclid's method
 
// x and y store solution of
// equation ax + by = g                 
public static int gcd(int a, int b)
{
    if (b == 0)
    {
        x = 1;
        y = 0;
        return a;
    }
 
    int store_gcd = gcd(b, a % b);
 
    // Euclidean Algorithm
    x = y1;
    y = x1 - y1 * (a / b);
 
    // store_gcd returns
    // the gcd of a and b
    return store_gcd;
}
 
// Function to find any
// possible solution
public static int possible_solution(int a, int b,
                                    int c)
{
    g = gcd(Math.abs(a), Math.abs(b));
 
    // Condition if solution
    // does not exists
    if (c % g != 0)
    {
        return 0;
    }
 
    x0 *= c / g;
    y0 *= c / g;
 
    // Adjusting the sign
    // of x0 and y0
    if (a < 0)
        x0 *= -1;
    if (b < 0)
        y0 *= -1;
 
    return 1;
}
 
// Function to shift solution
public static void shift_solution(int a, int b,
                                  int shift_var)
{
     
    // Shifting to obtain
    // another solution
    x += shift_var * b;
    y -= shift_var * a;
}
 
// Function to find minimum
// value of x and y
public static int find_min_sum(int a, int b,
                               int c)
{
    int x = 0, y = 0, g = 0;
 
    // g is the gcd of a and b
    if (possible_solution(a, b, c) == 0)
        return -1;
 
    if (g != 0)
    {
        a /= g;
        b /= g;
    }
 
    // Store sign of a and b
    int sign_a = a > 0 ? + 1 : -1;
    int sign_b = b > 0 ? + 1 : -1;
 
    shift_solution(a, b, -x / b);
 
    // If x is less than 0, then
    // shift solution
    if (x < 0)
        shift_solution(a, b, sign_b);
 
    int minx1 = x;
 
    shift_solution(a, b, y / a);
 
    // If y is less than 0, then
    // shift solution
    if (y < 0)
        shift_solution(a, b, -sign_a);
 
    int minx2 = x;
 
    if (minx2 > x)
    {
        int temp = minx2;
        minx2 = x;
        x = temp;
    }
    int minx = Math.max(minx1, minx2);
 
    // Find intersection such
    // that both x and y are positive
 
    if (minx > x)
        return -1;
 
    // miny is value of y
    // corresponding to minx
    int miny = (c - a * x) / b;
 
    // Returns minimum value of x+y
    return (miny + minx);
}
 
// Driver Code
public static void main(String[] args)
{
     
    // Given a, b, and c
    int a = 2, b = 2, c = 0;
 
    // Function call
    System.out.println(find_min_sum(a, b, c));
}
}
 
// This code is contributed by grand_master


Python3




# Python3 program for the
# above approach
 
x, y, x1, y1 = 0, 0, 0, 0
x0, y0, g = 0, 0, 0
 
# Function to find the gcd
# of a & b by Euclid's method
 
# x and y store solution of
# equation ax + by = g
def gcd(a, b) :
     
    global x, y, x1, y1
    if (b == 0) :
     
        x = 1
        y = 0
        return a
     
    store_gcd = gcd(b, a % b)
     
    # Euclidean Algorithm
    x = y1
    y = x1 - y1 * (a // b)
     
    # store_gcd returns
    # the gcd of a and b
    return store_gcd
 
# Function to find any
# possible solution
def possible_solution(a, b, c) :
     
    global x0, y0, g
    g = gcd(abs(a), abs(b))
     
    # Condition if solution
    # does not exists
    if (c % g != 0) :
     
        return 0
     
    x0 *= c // g
    y0 *= c // g
     
    # Adjusting the sign
    # of x0 and y0
    if (a < 0) :
        x0 *= -1
    if (b < 0) :
        y0 *= -1
    return 1
 
# Function to shift solution
def shift_solution(a, b, shift_var) :
     
    global x, y
    # Shifting to obtain
    # another solution
    x += shift_var * b
    y -= shift_var * a
 
# Function to find minimum
# value of x and y
def find_min_sum(a, b, c) :
    global x, y, g
    x, y, g = 0, 0, 0
     
    # g is the gcd of a and b
    if (possible_solution(a, b, c) == 0) :
        return -1
     
    if (g != 0) :
     
        a //= g
        b //= g
     
    # Store sign of a and b
    if a > 0 :
        sign_a = 1
    else :
        sign_a = -1
     
    if b > 0 :
        sign_b = 1
    else :
        sign_b = -1
     
    shift_solution(a, b, -x // b)
     
    # If x is less than 0,
    # then shift solution
    if (x < 0) :
        shift_solution(a, b, sign_b)
     
    minx1 = x
     
    shift_solution(a, b, y // a)
     
    # If y is less than 0,
    # then shift solution
    if (y < 0) :
        shift_solution(a, b, -sign_a)
     
    minx2 = x
     
    if (minx2 > x) :
     
        temp = minx2
        minx2 = x
        x = temp
     
    minx = max(minx1, minx2)
     
    # Find intersection such
    # that both x and y are positive
    if (minx > x) :
        return -1
     
    # miny is value of y
    # corresponding to minx
    miny = (c - a * x) // b
     
    # Returns minimum value
    # of x + y
    return (miny + minx)
 
 
# Given a, b, and c
a, b, c = 2, 2, 0
 
# Function call
print(find_min_sum(a, b, c))
 
# This code is contributed by divyesh072019


C#




// C# program for the
// above approach
using System;
class GFG{
 
public static int x = 0, y = 0,
                  x1 = 0, y1 = 0;
public static int x0 = 0, y0 = 0,
                  g = 0;
 
// Function to find the gcd
// of a & b by Euclid's method
 
// x and y store solution of
// equation ax + by = g
public static int gcd(int a, int b)
{
  if (b == 0)
  {
    x = 1;
    y = 0;
    return a;
  }
 
  int store_gcd = gcd(b,
                      a % b);
 
  // Euclidean Algorithm
  x = y1;
  y = x1 - y1 *
      (a / b);
 
  // store_gcd returns
  // the gcd of a and b
  return store_gcd;
}
 
// Function to find any
// possible solution
public static int possible_solution(int a,
                                    int b,
                                    int c)
{
  g = gcd(Math.Abs(a),
          Math.Abs(b));
 
  // Condition if solution
  // does not exists
  if (c % g != 0)
  {
    return 0;
  }
 
  x0 *= c / g;
  y0 *= c / g;
 
  // Adjusting the sign
  // of x0 and y0
  if (a < 0)
    x0 *= -1;
  if (b < 0)
    y0 *= -1;
  return 1;
}
 
// Function to shift solution
public static void shift_solution(int a, int b,
                                  int shift_var)
{
  // Shifting to obtain
  // another solution
  x += shift_var * b;
  y -= shift_var * a;
}
 
// Function to find minimum
// value of x and y
public static int find_min_sum(int a,
                               int b,
                               int c)
{
  int x = 0, y = 0, g = 0;
 
  // g is the gcd of a and b
  if (possible_solution(a, b,
                        c) == 0)
    return -1;
 
  if (g != 0)
  {
    a /= g;
    b /= g;
  }
 
  // Store sign of a and b
  int sign_a = a > 0 ?
               +1 : -1;
  int sign_b = b > 0 ?
               +1 : -1;
 
  shift_solution(a, b,
                 -x / b);
 
  // If x is less than 0,
  // then shift solution
  if (x < 0)
    shift_solution(a, b,
                   sign_b);
 
  int minx1 = x;
 
  shift_solution(a, b,
                 y / a);
 
  // If y is less than 0,
  // then shift solution
  if (y < 0)
    shift_solution(a, b,
                   -sign_a);
 
  int minx2 = x;
 
  if (minx2 > x)
  {
    int temp = minx2;
    minx2 = x;
    x = temp;
  }
   
  int minx = Math.Max(minx1,
                      minx2);
 
  // Find intersection such
  // that both x and y are positive
  if (minx > x)
    return -1;
 
  // miny is value of y
  // corresponding to minx
  int miny = (c - a *
              x) / b;
 
  // Returns minimum value
  // of x + y
  return (miny + minx);
}
 
// Driver Code
public static void Main(String[] args)
{
  // Given a, b, and c
  int a = 2, b = 2, c = 0;
 
  // Function call
  Console.Write(find_min_sum(a, b, c));
}
}
 
// This code is contributed by Chitranayal


Javascript




<script>
 
    // Javascript program for the above approach
     
    let x = 0, y = 0, x1 = 0, y1 = 0;
    let x0 = 0, y0 = 0, g = 0;
 
    // Function to find the gcd
    // of a & b by Euclid's method
 
    // x and y store solution of
    // equation ax + by = g
    function gcd(a, b)
    {
      if (b == 0)
      {
        x = 1;
        y = 0;
        return a;
      }
 
      let store_gcd = gcd(b, a % b);
 
      // Euclidean Algorithm
      x = y1;
      y = x1 - y1 * parseInt(a / b, 10);
 
      // store_gcd returns
      // the gcd of a and b
      return store_gcd;
    }
 
    // Function to find any
    // possible solution
    function possible_solution(a, b, c)
    {
      g = gcd(Math.abs(a), Math.abs(b));
 
      // Condition if solution
      // does not exists
      if (c % g != 0)
      {
        return 0;
      }
 
      x0 *= parseInt(c / g, 10);
      y0 *= parseInt(c / g, 10);
 
      // Adjusting the sign
      // of x0 and y0
      if (a < 0)
        x0 *= -1;
      if (b < 0)
        y0 *= -1;
      return 1;
    }
 
    // Function to shift solution
    function shift_solution(a, b, shift_var)
    {
      // Shifting to obtain
      // another solution
      x += shift_var * b;
      y -= shift_var * a;
    }
 
    // Function to find minimum
    // value of x and y
    function find_min_sum(a, b, c)
    {
      let x = 0, y = 0, g = 0;
 
      // g is the gcd of a and b
      if (possible_solution(a, b, c) == 0)
        return -1;
 
      if (g != 0)
      {
        a = parseInt(a / g, 10);
        b = parseInt(b / g, 10);
      }
 
      // Store sign of a and b
      let sign_a = a > 0 ? +1 : -1;
      let sign_b = b > 0 ? +1 : -1;
 
      shift_solution(a, b, parseInt(-x / b, 10));
 
      // If x is less than 0,
      // then shift solution
      if (x < 0)
        shift_solution(a, b, sign_b);
 
      let minx1 = x;
 
      shift_solution(a, b, parseInt(y / a, 10));
 
      // If y is less than 0,
      // then shift solution
      if (y < 0)
        shift_solution(a, b, -sign_a);
 
      let minx2 = x;
 
      if (minx2 > x)
      {
        let temp = minx2;
        minx2 = x;
        x = temp;
      }
 
      let minx = Math.max(minx1, minx2);
 
      // Find intersection such
      // that both x and y are positive
      if (minx > x)
        return -1;
 
      // miny is value of y
      // corresponding to minx
      let miny = parseInt((c - a * x) / b, 10);
 
      // Returns minimum value
      // of x + y
      return (miny + minx);
    }
     
    // Given a, b, and c
    let a = 2, b = 2, c = 0;
 
    // Function call
    document.write(find_min_sum(a, b, c));
     
</script>


 
 

Output: 

0

 

Time Complexity: O(loga+logb) = O(logn) , time used to find gcd 
Auxiliary Space: O(1) , as no extra space is used

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments