Wednesday, November 20, 2024
Google search engine
HomeData Modelling & AISubarray whose absolute sum is closest to K

Subarray whose absolute sum is closest to K

Given an array of n elements and an integer K, the task is to find the subarray with minimum value of ||a[i] + a[i + 1] + ……. a[j]| – K|. In other words, find the contiguous sub-array whose sum of elements shows minimum deviation from K or the subarray whose absolute sum is closest to K. 

Example 

Input:: a[] = {1, 3, 7, 10}, K = 15 
Output: Subarray {7, 10} 
The contiguous sub-array [7, 10] shows minimum deviation of 2 from 15.

Input: a[] = {1, 2, 3, 4, 5, 6}, K = 6 
Output: Subarray {1, 2, 3} 
The contiguous sub-array [1, 2, 3] shows minimum deviation of 0 from 6.

A naive approach would be to check if the sum of each contiguous sub-array and its difference from K. 

Below is the implementation of the above approach:

C++




// C++ code to find sub-array whose
// sum shows the minimum deviation
#include <bits/stdc++.h>
using namespace std;
 
int* getSubArray(int arr[], int n, int K)
{
    int i = -1;
    int j = -1;
    int currSum = 0;
       
    // Starting index, ending index,
    // Deviation
    int* result = new int[3]{ i, j,
                              abs(K -
                              abs(currSum)) };
       
    // Iterate i and j to get all subarrays
    for(i = 0; i < n; i++)
    {
        currSum = 0;
           
        for(j = i; j < n; j++)
        {
            currSum += arr[j];
            int currDev = abs(K - abs(currSum));
               
            // Found sub-array with less sum
            if (currDev < result[2])
            {
                result[0] = i;
                result[1] = j;
                result[2] = currDev;
            }
               
            // Exactly same sum
            if (currDev == 0)
                return result;
        }
    }
    return result;
}
 
// Driver code  
int main()
{
    int arr[8] = { 15, -3, 5, 2, 7, 6, 34, -6 };
    int n = sizeof(arr) / sizeof(arr[0]);
    int K = 50;
           
    // Array to store return values
    int* ans = getSubArray(arr, n, K);
           
    if (ans[0] == -1)
    {
        cout << "The empty array shows "
             << "minimum Deviation";
    }
    else
    {
        for(int i = ans[0]; i <= ans[1]; i++)
            cout << arr[i] << " ";
    }
    return 0;
}
 
// This code is contributed by divyeshrabadiya07


Java




// Java code to find sub-array whose
// sum shows the minimum deviation
class GFG{
     
public static int[] getSubArray(int[] arr,
                                int n,int K)
{
    int i = -1;
    int j = -1;
    int currSum = 0;
     
    // Starting index, ending index, Deviation
    int [] result = { i, j,
                      Math.abs(K -
                      Math.abs(currSum)) };
     
    // Iterate i and j to get all subarrays
    for(i = 0; i < n; i++)
    {
        currSum = 0;
         
        for(j = i; j < n; j++)
        {
            currSum += arr[j];
            int currDev = Math.abs(K -
                          Math.abs(currSum));
             
            // Found sub-array with less sum
            if(currDev < result[2])
            {
                result[0] = i;
                result[1] = j;
                result[2] = currDev;
            }
             
            // Exactly same sum
            if(currDev == 0)
                return result;
        }
    }
    return result;
}
 
// Driver Code
public static void main(String[] args)
{
    int[] arr = { 15, -3, 5, 2, 7, 6, 34, -6 };
    int n = arr.length;
    int K = 50;
         
    // Array to store return values
    int[] ans = getSubArray(arr, n, K);
         
    if(ans[0] == -1)
    {
        System.out.println("The empty array " +
                           "shows minimum Deviation");
    }
    else
    {
        for(int i = ans[0]; i <= ans[1]; i++)
            System.out.print(arr[i] + " ");
    }
}
}
 
// This code is contributed by dadimadhav


Python




# Python Code to find sub-array whose
# sum shows the minimum deviation
 
def getSubArray(arr, n, K):
    i = -1
    j = -1
    currSum = 0
    # starting index, ending index, Deviation
    result = [i, j, abs(K-abs(currSum))]
     
    # iterate i and j to get all subarrays
    for i in range(0, n):
         
        currSum = 0
         
        for j in range(i, n):
            currSum += arr[j]
            currDev = abs(K-abs(currSum))
             
            # found sub-array with less sum
            if (currDev < result[2]):
                result = [i, j, currDev]
                 
            # exactly same sum
            if (currDev == 0):
                return result
    return result
     
# Driver Code
def main():
    arr = [15, -3, 5, 2, 7, 6, 34, -6]
     
    n = len(arr)
     
    K = 50
     
    [i, j, minDev] = getSubArray(arr, n, K)
     
    if(i ==-1):
        print("The empty array shows minimum Deviation")
        return 0
     
    for i in range(i, j + 1):
        print arr[i],
     
     
main()


C#




// C# code to find sub-array whose
// sum shows the minimum deviation
using System;
 
class GFG{
     
public static int[] getSubArray(int[] arr,
                                int n, int K)
{
    int i = -1;
    int j = -1;
    int currSum = 0;
     
    // Starting index, ending index, Deviation
    int [] result = { i, j,
                      Math.Abs(K -
                      Math.Abs(currSum)) };
     
    // Iterate i and j to get all subarrays
    for(i = 0; i < n; i++)
    {
        currSum = 0;
         
        for(j = i; j < n; j++)
        {
            currSum += arr[j];
            int currDev = Math.Abs(K -
                          Math.Abs(currSum));
             
            // Found sub-array with less sum
            if (currDev < result[2])
            {
                result[0] = i;
                result[1] = j;
                result[2] = currDev;
            }
             
            // Exactly same sum
            if (currDev == 0)
                return result;
        }
    }
    return result;
}
 
// Driver Code
public static void Main(string[] args)
{
    int[] arr = { 15, -3, 5, 2, 7, 6, 34, -6 };
    int n = arr.Length;
    int K = 50;
         
    // Array to store return values
    int[] ans = getSubArray(arr, n, K);
         
    if (ans[0] == -1)
    {
        Console.Write("The empty array " +
                      "shows minimum Deviation");
    }
    else
    {
        for(int i = ans[0]; i <= ans[1]; i++)
            Console.Write(arr[i] + " ");
    }
}
}
 
// This code is contributed by rutvik_56


Javascript




<script>
 
// Javascript code to find sub-array whose
// sum shows the minimum deviation
 
function getSubArray(arr, n, K)
{
    let i = -1;
    let j = -1;
    let currSum = 0;
      
    // Starting index, ending index, Deviation
    let result = [ i, j,
                      Math.abs(K -
                      Math.abs(currSum)) ];
      
    // Iterate i and j to get all subarrays
    for(i = 0; i < n; i++)
    {
        currSum = 0;
          
        for(j = i; j < n; j++)
        {
            currSum += arr[j];
            let currDev = Math.abs(K -
                          Math.abs(currSum));
              
            // Found sub-array with less sum
            if(currDev < result[2])
            {
                result[0] = i;
                result[1] = j;
                result[2] = currDev;
            }
              
            // Exactly same sum
            if(currDev == 0)
                return result;
        }
    }
    return result;
}
 
// driver code
 
     let arr = [ 15, -3, 5, 2, 7, 6, 34, -6 ];
    let n = arr.length;
    let K = 50;
          
    // Array to store return values
    let ans = getSubArray(arr, n, K);
          
    if(ans[0] == -1)
    {
        document.write("The empty array " +
                           "shows minimum Deviation");
    }
    else
    {
        for(let i = ans[0]; i <= ans[1]; i++)
            document.write(arr[i] + " ");
    }
   
</script>


Output: 

-3 5 2 7 6 34

 

Complexity Analysis:

  • Time Complexity: O(N²)
  • Auxiliary Space: O(1)

Efficient Approach: 

If the array only consists of non-negative integers, use the sliding window technique to improve the calculation time for sum in each iteration. The sliding window technique reduces the complexity by calculating the new sub-array sum using the previous sub-array sum. Increase the right index till the difference (K-sum) is greater than zero. The first sub-array with negative (K-sum) is considered, and the next sub-array is with left index = i+1(where i is the current right index).

Below is the implementation of the above approach: 

C++




// C++ code to find non-negative sub-array
// whose sum shows minimum deviation. This
// works only if all elements in array are
// non-negative
#include <bits/stdc++.h>
using namespace std;
 
struct Pair
{
    int f, s, t;
 
    Pair(int f, int s, int t)
    {
        this->f = f;
        this->s = s;
        this->t = t;
    }
};
 
// Function to return the index
Pair* getSubArray(int *arr, int n, int K)
{
    int currSum = 0;
    int prevDif = 0;
    int currDif = 0;
     
    Pair *result = new Pair(
        -1, -1, abs(K - abs(currSum)));
    Pair *resultTmp = result;
    int i = 0;
    int j = 0;
     
    while (i<= j && j<n)
    {
         
        // Add Last element tp currSum
        currSum += arr[j];
         
        // Save Difference of previous Iteration
        prevDif = currDif;
         
        // Calculate new Difference
        currDif = K - abs(currSum);
         
        // When the Sum exceeds K
        if (currDif <= 0)
        {
            if (abs(currDif) < abs(prevDif))
            {
                 
                // Current Difference greater
                // in magnitude. Store Temporary
                // Result
                resultTmp = new Pair(i, j, currDif);
            }
            else
            {
                 
                // Difference in Previous was lesser
                // In previous, Right index = j-1
                resultTmp = new Pair(i, j - 1, prevDif);
                      
                // In next iteration, Left Index Increases
                // but Right Index remains the Same
                // Update currSum and i Accordingly
                currSum -= (arr[i] + arr[j]);
                 
                i += 1;
            }
        }
         
        // Case to simply increase Right Index
        else
        {
            resultTmp = new Pair(i, j, currDif);
            j += 1;
        }
          
        if (abs(resultTmp->t) < abs(result->t))
        {
             
            // Check if lesser deviation found
            result = resultTmp;
        }
    }
    return result;
}
 
// Driver Code
int main()
{
    int arr[] = { 15, -3, 5, 2, 7, 6, 34, -6 };
     
    int n = sizeof(arr) / sizeof(arr[0]);
     
    int K = 50;
     
    Pair *tmp = getSubArray(arr, n, K);
    int i = tmp->f;
    int j = tmp->s;
    int minDev = tmp->t;
     
    if (i == -1)
    {
        cout << "The empty array shows minimum Deviation"
             << endl;
        return 0;
    }
     
    for(int k = i + 1; k < j + 1; k++)
    {
        cout << arr[k] << " ";
    }
     
    return 0;
}
 
// This code is contributed by pratham76


Java




// Java code to find non-negative sub-array
// whose sum shows minimum deviation. This
// works only if all elements in array are
// non-negative
import java.util.*;
 
class GFG{
 
static class Pair
{
    int f, s, t;
 
    Pair(int f, int s, int t)
    {
        this.f = f;
        this.s = s;
        this.t = t;
    }
};
 
// Function to return the index
static Pair getSubArray(int []arr, int n, int K)
{
    int currSum = 0;
    int prevDif = 0;
    int currDif = 0;
     
    Pair result = new Pair(
        -1, -1, Math.abs(K - Math.abs(currSum)));
    Pair resultTmp = result;
    int i = 0;
    int j = 0;
     
    while (i<= j && j<n)
    {
         
        // Add Last element tp currSum
        currSum += arr[j];
         
        // Save Difference of previous Iteration
        prevDif = currDif;
         
        // Calculate new Difference
        currDif = K - Math.abs(currSum);
         
        // When the Sum exceeds K
        if (currDif <= 0)
        {
            if (Math.abs(currDif) < Math.abs(prevDif))
            {
                 
                // Current Difference greater
                // in magnitude. Store Temporary
                // Result
                resultTmp = new Pair(i, j, currDif);
            }
            else
            {
                 
                // Difference in Previous was lesser
                // In previous, Right index = j-1
                resultTmp = new Pair(i, j - 1, prevDif);
                      
                // In next iteration, Left Index Increases
                // but Right Index remains the Same
                // Update currSum and i Accordingly
                currSum -= (arr[i] + arr[j]);
                 
                i += 1;
            }
        }
         
        // Case to simply increase Right Index
        else
        {
            resultTmp = new Pair(i, j, currDif);
            j += 1;
        }
          
        if (Math.abs(resultTmp.t) < Math.abs(result.t))
        {
             
            // Check if lesser deviation found
            result = resultTmp;
        }
    }
    return result;
}
 
// Driver Code
public static void main(String[] args)
{
    int arr[] = { 15, -3, 5, 2, 7, 6, 34, -6 };
     
    int n = arr.length;
     
    int K = 50;
     
    Pair tmp = getSubArray(arr, n, K);
    int i = tmp.f;
    int j = tmp.s;
    int minDev = tmp.t;
     
    if (i == -1)
    {
        System.out.print("The empty array shows minimum Deviation"
             +"\n");
        return ;
    }
     
    for(int k = i + 1; k < j + 1; k++)
    {
        System.out.print(arr[k]+ " ");
    }
     
}
}
 
// This code is contributed by 29AjayKumar


Python




# Python Code to find non-negative
# sub-array whose sum shows minimum deviation
# This works only if all elements
# in array are non-negative
 
 
# function to return the index
def getSubArray(arr, n, K):
    currSum = 0
    prevDif = 0
    currDif = 0
    result = [-1, -1, abs(K-abs(currSum))]
    resultTmp = result
    i = 0
    j = 0
     
    while(i<= j and j<n):
         
        # Add Last element tp currSum
        currSum += arr[j]
         
        # Save Difference of previous Iteration
        prevDif = currDif
         
        # Calculate new Difference
        currDif = K - abs(currSum)
         
        # When the Sum exceeds K
        if(currDif <= 0):
            if abs(currDif) < abs(prevDif):
                 
            # Current Difference greater in magnitude
            # Store Temporary Result
                resultTmp = [i, j, currDif]
            else:
                 
            # Difference in Previous was lesser
            # In previous, Right index = j-1
                resultTmp = [i, j-1, prevDif]
                 
            # In next iteration, Left Index Increases
            # but Right Index remains the Same
            # Update currSum and i Accordingly
            currSum -= (arr[i]+arr[j])
             
            i += 1
         
        # Case to simply increase Right Index
        else:
            resultTmp = [i, j, currDif]
            j += 1
             
        if(abs(resultTmp[2]) < abs(result[2])):
        # Check if lesser deviation found
            result = resultTmp
             
    return result
 
# Driver Code
def main():
    arr = [15, -3, 5, 2, 7, 6, 34, -6]
     
    n = len(arr)
     
    K = 50
     
    [i, j, minDev] = getSubArray(arr, n, K)
     
    if(i ==-1):
        print("The empty array shows minimum Deviation")
        return 0
     
    for i in range(i, j+1):
        print arr[i],
     
     
main()


C#




// C# code to find non-negative sub-array
// whose sum shows minimum deviation. This
// works only if all elements in array are
// non-negative
using System;
 
public class GFG{
 
  class Pair
  {
    public int f, s, t;
 
    public Pair(int f, int s, int t)
    {
      this.f = f;
      this.s = s;
      this.t = t;
    }
  };
 
  // Function to return the index
  static Pair getSubArray(int []arr, int n, int K)
  {
    int currSum = 0;
    int prevDif = 0;
    int currDif = 0;
 
    Pair result = new Pair(
      -1, -1, Math.Abs(K - Math.Abs(currSum)));
    Pair resultTmp = result;
    int i = 0;
    int j = 0;
 
    while (i <= j && j < n)
    {
 
      // Add Last element tp currSum
      currSum += arr[j];
 
      // Save Difference of previous Iteration
      prevDif = currDif;
 
      // Calculate new Difference
      currDif = K - Math.Abs(currSum);
 
      // When the Sum exceeds K
      if (currDif <= 0)
      {
        if (Math.Abs(currDif) < Math.Abs(prevDif))
        {
 
          // Current Difference greater
          // in magnitude. Store Temporary
          // Result
          resultTmp = new Pair(i, j, currDif);
        }
        else
        {
 
          // Difference in Previous was lesser
          // In previous, Right index = j-1
          resultTmp = new Pair(i, j - 1, prevDif);
 
          // In next iteration, Left Index Increases
          // but Right Index remains the Same
          // Update currSum and i Accordingly
          currSum -= (arr[i] + arr[j]);
 
          i += 1;
        }
      }
 
      // Case to simply increase Right Index
      else
      {
        resultTmp = new Pair(i, j, currDif);
        j += 1;
      }
 
      if (Math.Abs(resultTmp.t) < Math.Abs(result.t))
      {
 
        // Check if lesser deviation found
        result = resultTmp;
      }
    }
    return result;
  }
 
  // Driver Code
  public static void Main(String[] args)
  {
    int []arr = { 15, -3, 5, 2, 7, 6, 34, -6 };
 
    int n = arr.Length;
 
    int K = 50;
 
    Pair tmp = getSubArray(arr, n, K);
    int i = tmp.f;
    int j = tmp.s;
    int minDev = tmp.t;
 
    if (i == -1)
    {
      Console.Write("The empty array shows minimum Deviation"
                    +"\n");
      return ;
    }
 
    for(int k = i + 1; k < j + 1; k++)
    {
      Console.Write(arr[k]+ " ");
    }
 
  }
}
 
// This code is contributed by 29AjayKumar


Javascript




// JavaScript code to find non-negative sub-array
// whose sum shows minimum deviation. This
// works only if all elements in array are
// non-negative
 
class Pair {
  constructor(f, s, t) {
    this.f = f;
    this.s = s;
    this.t = t;
  }
}
 
// Function to return the index
function getSubArray(arr, n, K) {
  let currSum = 0;
  let prevDif = 0;
  let currDif = 0;
   
  let result = new Pair(-1, -1, Math.abs(K - Math.abs(currSum)));
  let resultTmp = result;
  let i = 0;
  let j = 0;
   
  while (i <= j && j < n) {
     
    // Add Last element to currSum
    currSum += arr[j];
     
    // Save Difference of previous Iteration
    prevDif = currDif;
     
    // Calculate new Difference
    currDif = K - Math.abs(currSum);
     
    // When the Sum exceeds K
    if (currDif <= 0) {
      if (Math.abs(currDif) < Math.abs(prevDif)) {
         
        // Current Difference greater
        // in magnitude. Store Temporary
        // Result
        resultTmp = new Pair(i, j, currDif);
      } else {
         
        // Difference in Previous was lesser
        // In previous, Right index = j-1
        resultTmp = new Pair(i, j - 1, prevDif);
               
        // In next iteration, Left Index Increases
        // but Right Index remains the Same
        // Update currSum and i Accordingly
        currSum -= (arr[i] + arr[j]);
         
        i += 1;
      }
    }
     
    // Case to simply increase Right Index
    else {
      resultTmp = new Pair(i, j, currDif);
      j += 1;
    }
      
    if (Math.abs(resultTmp.t) < Math.abs(result.t)) {
       
      // Check if lesser deviation found
      result = resultTmp;
    }
  }
  return result;
}
 
// Driver Code
let arr = [ 15, -3, 5, 2, 7, 6, 34, -6 ];
 
let n = arr.length;
 
let K = 50;
 
let tmp = getSubArray(arr, n, K);
let i = tmp.f;
let j = tmp.s;
let minDev = tmp.t;
 
if (i == -1) {
  console.log("The empty array shows minimum Deviation");
}
 
for(let k = i + 1; k < j + 1; k++) {
  console.log(arr[k] + " ");
}
 
//Code is contributed by dhanshriborse


Output

-3 5 2 7 6 34 

Complexity Analysis:

  • Time Complexity: O(N)
  • Auxiliary Space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments