Saturday, November 16, 2024
Google search engine
HomeData Modelling & AISkewness of statistical data

Skewness of statistical data

Given data in an array. Find skewness of the data distribution.

Skewness is a measure of the asymmetry of data distribution. Skewness is an asymmetry in a statistical distribution, in which the curve appears distorted or skewed either to the left or to the right. Skewness can be quantified to define the extent to which a distribution differs from a normal distribution. Skewness can be calculated as 
 

Where gamma is called skewness
      sigma is called standard deviation and sigma square can be calculated as
      

      N is number of population and
      mu is called mean of data.  

Examples : 

Input : arr[] = {2.5, 3.7, 6.6, 9.1, 9.5, 10.7, 11.9, 21.5, 22.6, 25.2}
Output : 0.777001

Input : arr[] = {5, 20, 40, 80, 100}
Output : 0.0980392

Implementation:

C++




// CPP code to find skewness
// of statistical data.
 
#include<bits/stdc++.h>
using namespace std;
 
// Function to calculate
// mean of data.
float mean(float arr[], int n)
{
    float sum = 0;
    for (int i = 0; i < n; i++)
        sum = sum + arr[i];       
    return sum / n;
}
 
// Function to calculate standard
// deviation of data.
float standardDeviation(float arr[],
                        int n)
{
    float sum = 0;
     
    // find standard deviation
    // deviation of data.
    for (int i = 0; i < n; i++)
        sum = (arr[i] - mean(arr, n)) *
              (arr[i] - mean(arr, n));
               
    return sqrt(sum / n);
}
 
// Function to calculate skewness.
float skewness(float arr[], int n)
{  
    // Find skewness using above formula
    float sum = 0;
    for (int i = 0; i < n; i++)
        sum = (arr[i] - mean(arr, n)) *
              (arr[i] - mean(arr, n)) *
              (arr[i] - mean(arr, n));             
    return sum / (n * standardDeviation(arr, n) *
                 standardDeviation(arr, n) *
                 standardDeviation(arr, n) *
                 standardDeviation(arr, n));
}
 
// Driver function
int main()
{
    float arr[] = {2.5, 3.7, 6.6, 9.1,
                   9.5, 10.7, 11.9, 21.5,
                   22.6, 25.2};
                    
    // calculate size of array.
    int n = sizeof(arr)/sizeof(arr[0]);
     
    // skewness Function call
    cout << skewness(arr, n);
     
    return 0;
}


Java




// java code to find skewness
// of statistical data.
import java.io.*;
 
class GFG {
     
    // Function to calculate
    // mean of data.
    static double mean(double arr[], int n)
    {
        double sum = 0;
         
        for (int i = 0; i < n; i++)
            sum = sum + arr[i];
         
        return sum / n;
    }
     
    // Function to calculate standard
    // deviation of data.
    static double standardDeviation(double arr[],
                                            int n)
    {
         
        double sum = 0 ;
         
        // find standard deviation
        // deviation of data.
        for (int i = 0; i < n; i++)
            sum = (arr[i] - mean(arr, n)) *
                        (arr[i] - mean(arr, n));
                 
        return Math.sqrt(sum / n);
    }
     
    // Function to calculate skewness.
    static double skewness(double arr[], int n)
    {
        // Find skewness using
        // above formula
        double sum = 0;
         
        for (int i = 0; i < n; i++)
            sum = (arr[i] - mean(arr, n)) *
                    (arr[i] - mean(arr, n)) *
                        (arr[i] - mean(arr, n));            
         
        return sum / (n * standardDeviation(arr, n) *
                          standardDeviation(arr, n) *
                          standardDeviation(arr, n) *
                          standardDeviation(arr, n));
    }
     
    // Driver function
    public static void main (String[] args)
    {
        double arr[] = { 2.5, 3.7, 6.6, 9.1,
                        9.5, 10.7, 11.9, 21.5,
                                   22.6, 25.2 };
                         
        // calculate size of array.
        int n = arr.length;
         
        // skewness Function call
        System.out.println(skewness(arr, n));
    }
}
 
//This code is contributed by vt_m


Python3




# Python3 code to find skewness
# of statistical data.
from math import sqrt
 
# Function to calculate
# mean of data.
def mean(arr, n):
     
    summ = 0
    for i in range(n):
        summ = summ + arr[i]    
    return summ / n
 
# Function to calculate standard
# deviation of data.
def standardDeviation(arr,n):
     
    summ = 0
     
    # find standard deviation
    # deviation of data.
    for i in range(n):
        summ = (arr[i] - mean(arr, n)) *(arr[i] - mean(arr, n))
     
    return sqrt(summ / n)
 
# Function to calculate skewness.
def skewness(arr, n):
     
    # Find skewness using above formula
    summ = 0
    for i in range(n):
        summ = (arr[i] - mean(arr, n))*(arr[i] - mean(arr, n))*(arr[i] - mean(arr, n))
    return summ / (n * standardDeviation(arr, n) *standardDeviation(arr, n) *standardDeviation(arr, n) * standardDeviation(arr, n))
 
# Driver function
 
arr = [2.5, 3.7, 6.6, 9.1,9.5, 10.7, 11.9, 21.5,22.6, 25.2]
                 
# calculate size of array.
n = len(arr)
 
# skewness Function call
print('%.6f'%skewness(arr, n))
 
# This code is contributed by shubhamsingh10


C#




// C# code to find skewness
// of statistical data.
using System;
 
class GFG {
     
    // Function to calculate
    // mean of data.
    static float mean(double []arr, int n)
    {
        double sum = 0;
         
        for (int i = 0; i < n; i++)
            sum = sum + arr[i];
         
        return (float)sum / n;
    }
     
    // Function to calculate standard
    // deviation of data.
    static float standardDeviation(double []arr,
                                            int n)
    {
         
        double sum = 0 ;
         
        // find standard deviation
        // deviation of data.
        for (int i = 0; i < n; i++)
            sum = (arr[i] - mean(arr, n)) *
                  (arr[i] - mean(arr, n));
                 
        return (float)Math.Sqrt(sum / n);
    }
     
    // Function to calculate skewness.
    static float skewness(double []arr, int n)
    {
        // Find skewness using
        // above formula
        double sum = 0;
         
        for (int i = 0; i < n; i++)
            sum = (arr[i] - mean(arr, n)) *
                  (arr[i] - mean(arr, n)) *
                  (arr[i] - mean(arr, n));            
         
        return (float)sum / (n * standardDeviation(arr, n) *
                        standardDeviation(arr, n) *
                        standardDeviation(arr, n) *
                        standardDeviation(arr, n));
    }
     
    // Driver function
    public static void Main ()
    {
        double []arr = { 2.5, 3.7, 6.6, 9.1,
                        9.5, 10.7, 11.9, 21.5,
                                22.6, 25.2 };
                         
        // calculate size of array.
        int n = arr.Length;
         
        // skewness Function call
        Console.WriteLine(skewness(arr, n));
    }
}
 
// This code is contributed by vt_m


PHP




<?php
// PHP code to find skewness
// of statistical data.
 
// Function to calculate
// mean of data.
function mean( $arr, $n)
{
    $sum = 0;
    for ($i = 0; $i < $n; $i++)
        $sum = $sum + $arr[$i];
    return $sum / $n;
}
 
// Function to calculate standard
// deviation of data.
function standardDeviation($arr, $n)
{
    $sum = 0;
     
    // find standard deviation
    // deviation of data.
    for ($i = 0; $i < $n; $i++)
        $sum = ($arr[$i] - mean($arr, $n)) *
               ($arr[$i] - mean($arr, $n));
             
    return sqrt($sum / $n);
}
 
// Function to calculate skewness.
function skewness($arr, $n)
{
    // Find skewness using above formula
    $sum = 0;
    for ($i = 0; $i < $n; $i++)
        $sum = ($arr[$i] - mean($arr, $n)) *
               ($arr[$i] - mean($arr, $n)) *
               ($arr[$i] - mean($arr, $n));            
    return $sum / ($n * standardDeviation($arr, $n) *
                        standardDeviation($arr, $n) *
                        standardDeviation($arr, $n) *
                        standardDeviation($arr, $n));
}
 
// Driver Code
$arr = array(2.5, 3.7, 6.6, 9.1, 9.5,
             10.7, 11.9, 21.5, 22.6, 25.2);
                 
// calculate size of array.
$n = count($arr);
 
// skewness Function call
echo skewness($arr, $n);
 
 
// This code is contributed by vt_m
?>


Javascript




<script>
 
    // JavaScript code to find skewness
    // of statistical data.
     
    // Function to calculate
    // mean of data.
    function mean(arr, n)
    {
        let sum = 0;
           
        for (let i = 0; i < n; i++)
            sum = sum + arr[i];
           
        return sum / n;
    }
       
    // Function to calculate standard
    // deviation of data.
    function standardDeviation(arr, n)
    {
           
        let sum = 0 ;
           
        // find standard deviation
        // deviation of data.
        for (let i = 0; i < n; i++)
            sum = (arr[i] - mean(arr, n)) *
                  (arr[i] - mean(arr, n));
                   
        return Math.sqrt(sum / n);
    }
       
    // Function to calculate skewness.
    function skewness(arr, n)
    {
        // Find skewness using
        // above formula
        let sum = 0;
           
        for (let i = 0; i < n; i++)
            sum = (arr[i] - mean(arr, n)) *
                  (arr[i] - mean(arr, n)) *
                  (arr[i] - mean(arr, n));            
           
        return sum / (n * standardDeviation(arr, n) *
                        standardDeviation(arr, n) *
                        standardDeviation(arr, n) *
                        standardDeviation(arr, n));
    }
     
    let arr =
    [ 2.5, 3.7, 6.6, 9.1, 9.5, 10.7, 11.9, 21.5, 22.6, 25.2 ];
                           
    // calculate size of array.
    let n = arr.length;
 
    // skewness Function call
    document.write(skewness(arr, n).toFixed(6));
     
</script>


Output

0.777001

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments