Sunday, November 17, 2024
Google search engine
HomeData Modelling & AIShortest Common Supersequence

Shortest Common Supersequence

Given two strings str1 and str2, the task is to find the length of the shortest string that has both str1 and str2 as subsequences.

Examples : 

Input:   str1 = "geek",  str2 = "eke"
Output: 5
Explanation: 
String "geeke" has both string "geek" 
and "eke" as subsequences.

Input:   str1 = "AGGTAB",  str2 = "GXTXAYB"
Output:  9
Explanation: 
String "AGXGTXAYB" has both string 
"AGGTAB" and "GXTXAYB" as subsequences.
Recommended Practice

Method 1: This problem is closely related to longest common subsequence problem.
Below are steps.

  1. Find Longest Common Subsequence (lcs) of two given strings. For example, lcs of “geek” and “eke” is “ek”. 
  2. Insert non-lcs characters (in their original order in strings) to the lcs found above, and return the result. So “ek” becomes “geeke” which is shortest common supersequence.
    Let us consider another example, str1 = “AGGTAB” and str2 = “GXTXAYB”. LCS of str1 and str2 is “GTAB”. Once we find LCS, we insert characters of both strings in order and we get “AGXGTXAYB”

How does this work? 

We need to find a string that has both strings as subsequences and is the shortest such string. If both strings have all characters different, then result is sum of lengths of two given strings. If there are common characters, then we don’t want them multiple times as the task is to minimize length. Therefore, we first find the longest common subsequence, take one occurrence of this subsequence and add extra characters. 

Length of the shortest supersequence  
= (Sum of lengths of given two strings) 
- (Length of LCS of two given strings) 

Below is the implementation of above idea. The below implementation only finds length of the shortest super sequence. 

C++




// C++ program to find length of the
// shortest supersequence
#include <bits/stdc++.h>
using namespace std;
  
// Utility function to get max
// of 2 integers
int max(int a, int b) { return (a > b) ? a : b; }
  
// Returns length of LCS for
// X[0..m - 1], Y[0..n - 1]
int lcs(char* X, char* Y, int m, int n);
  
// Function to find length of the
// shortest supersequence of X and Y.
int shortestSuperSequence(char* X, char* Y)
{
    int m = strlen(X), n = strlen(Y);
  
    // find lcs
    int l = lcs(X, Y, m, n);
  
    // Result is sum of input string
    // lengths - length of lcs
    return (m + n - l);
}
  
// Returns length of LCS
// for X[0..m - 1], Y[0..n - 1]
int lcs(char* X, char* Y, int m, int n)
{
    int L[m + 1][n + 1];
    int i, j;
  
    // Following steps build L[m + 1][n + 1]
    // in bottom up fashion. Note that
    // L[i][j] contains length of LCS of
    // X[0..i - 1] and Y[0..j - 1]
    for (i = 0; i <= m; i++) {
        for (j = 0; j <= n; j++) {
            if (i == 0 || j == 0)
                L[i][j] = 0;
  
            else if (X[i - 1] == Y[j - 1])
                L[i][j] = L[i - 1][j - 1] + 1;
  
            else
                L[i][j] = max(L[i - 1][j], L[i][j - 1]);
        }
    }
  
    // L[m][n] contains length of LCS
    // for X[0..n - 1] and Y[0..m - 1]
    return L[m][n];
}
  
// Driver code
int main()
{
    char X[] = "AGGTAB";
    char Y[] = "GXTXAYB";
  
    cout << "Length of the shortest supersequence is "
         << shortestSuperSequence(X, Y) << endl;
  
    return 0;
}
  
// This code is contributed by Akanksha Rai


C




// C program to find length of
// the shortest supersequence
#include <stdio.h>
#include <string.h>
  
// Utility function to get
// max of 2 integers
int max(int a, int b) { return (a > b) ? a : b; }
  
// Returns length of LCS for
// X[0..m - 1], Y[0..n - 1]
int lcs(char* X, char* Y, int m, int n);
  
// Function to find length of the
// shortest supersequence of X and Y.
int shortestSuperSequence(char* X, char* Y)
{
    int m = strlen(X), n = strlen(Y);
  
    // find lcs
    int l = lcs(X, Y, m, n);
  
    // Result is sum of input string
    // lengths - length of lcs
    return (m + n - l);
}
  
// Returns length of LCS
// for X[0..m - 1], Y[0..n - 1]
int lcs(char* X, char* Y, int m, int n)
{
    int L[m + 1][n + 1];
    int i, j;
  
    // Following steps build L[m + 1][n + 1]
    // in bottom up fashion. Note that
    // L[i][j] contains length of LCS of
    // X[0..i - 1] and Y[0..j - 1]
    for (i = 0; i <= m; i++) {
        for (j = 0; j <= n; j++) {
            if (i == 0 || j == 0)
                L[i][j] = 0;
  
            else if (X[i - 1] == Y[j - 1])
                L[i][j] = L[i - 1][j - 1] + 1;
  
            else
                L[i][j] = max(L[i - 1][j], L[i][j - 1]);
        }
    }
  
    // L[m][n] contains length of LCS
    // for X[0..n - 1] and Y[0..m - 1]
    return L[m][n];
}
  
// Driver code
int main()
{
    char X[] = "AGGTAB";
    char Y[] = "GXTXAYB";
  
    printf("Length of the shortest supersequence is %d\n",
           shortestSuperSequence(X, Y));
  
    return 0;
}


Java




// Java program to find length of
// the shortest supersequence
import java.io.*;
class GFG {
  
    // Function to find length of the
    // shortest supersequence of X and Y.
    static int shortestSuperSequence(String X, String Y)
    {
        int m = X.length();
        int n = Y.length();
  
        // find lcs
        int l = lcs(X, Y, m, n);
  
        // Result is sum of input string
        // lengths - length of lcs
        return (m + n - l);
    }
  
    // Returns length of LCS
    // for X[0..m - 1], Y[0..n - 1]
    static int lcs(String X, String Y, int m, int n)
    {
        int[][] L = new int[m + 1][n + 1];
        int i, j;
  
        // Following steps build L[m + 1][n + 1]
        // in bottom up fashion. Note that
        // L[i][j] contains length of LCS
        // of X[0..i - 1]and Y[0..j - 1]
        for (i = 0; i <= m; i++) {
            for (j = 0; j <= n; j++) {
                if (i == 0 || j == 0)
                    L[i][j] = 0;
  
                else if (X.charAt(i - 1) == Y.charAt(j - 1))
                    L[i][j] = L[i - 1][j - 1] + 1;
  
                else
                    L[i][j] = Math.max(L[i - 1][j],
                                       L[i][j - 1]);
            }
        }
  
        // L[m][n] contains length of LCS
        // for X[0..n - 1] and Y[0..m - 1]
        return L[m][n];
    }
  
    // Driver code
    public static void main(String args[])
    {
        String X = "AGGTAB";
        String Y = "GXTXAYB";
  
        System.out.println("Length of the shortest "
                           + "supersequence is "
                           + shortestSuperSequence(X, Y));
    }
}
  
// This article is contributed by Sumit Ghosh


Python3




# Python program to find length
# of the shortest supersequence
  
# Function to find length of the
# shortest supersequence of X and Y.
  
  
def shortestSuperSequence(X, Y):
    m = len(X)
    n = len(Y)
    l = lcs(X, Y, m, n)
  
    # Result is sum of input string
    # lengths - length of lcs
    return (m + n - l)
  
# Returns length of LCS for
# X[0..m - 1], Y[0..n - 1]
  
  
def lcs(X, Y, m, n):
    L = [[0] * (n + 2) for i in
         range(m + 2)]
  
    # Following steps build L[m + 1][n + 1]
    # in bottom up fashion. Note that L[i][j]
    # contains length of LCS of X[0..i - 1]
    # and Y[0..j - 1]
    for i in range(m + 1):
  
        for j in range(n + 1):
  
            if (i == 0 or j == 0):
                L[i][j] = 0
  
            elif (X[i - 1] == Y[j - 1]):
                L[i][j] = L[i - 1][j - 1] + 1
  
            else:
                L[i][j] = max(L[i - 1][j],
                              L[i][j - 1])
  
    # L[m][n] contains length of
    # LCS for X[0..n - 1] and Y[0..m - 1]
    return L[m][n]
  
  
# Driver code
X = "AGGTAB"
Y = "GXTXAYB"
  
print("Length of the shortest supersequence is %d"
      % shortestSuperSequence(X, Y))
  
# This code is contributed by Ansu Kumari


C#




// C# program to find length of
// the shortest supersequence
using System;
  
class GFG {
    // Function to find length of the
    // shortest supersequence of X and Y.
    static int shortestSuperSequence(String X, String Y)
    {
        int m = X.Length;
        int n = Y.Length;
  
        // find lcs
        int l = lcs(X, Y, m, n);
  
        // Result is sum of input string
        // lengths - length of lcs
        return (m + n - l);
    }
  
    // Returns length of LCS for
    // X[0..m - 1], Y[0..n - 1]
    static int lcs(String X, String Y, int m, int n)
    {
        int[, ] L = new int[m + 1, n + 1];
        int i, j;
  
        // Following steps build L[m + 1][n + 1]
        // in bottom up fashion.Note that
        // L[i][j] contains length of LCS of
        // X[0..i - 1] and Y[0..j - 1]
        for (i = 0; i <= m; i++) {
            for (j = 0; j <= n; j++) {
                if (i == 0 || j == 0)
                    L[i, j] = 0;
  
                else if (X[i - 1] == Y[j - 1])
                    L[i, j] = L[i - 1, j - 1] + 1;
  
                else
                    L[i, j] = Math.Max(L[i - 1, j],
                                       L[i, j - 1]);
            }
        }
  
        // L[m][n] contains length of LCS
        // for X[0..n - 1] and Y[0..m - 1]
        return L[m, n];
    }
  
    // Driver code
    public static void Main()
    {
        String X = "AGGTAB";
        String Y = "GXTXAYB";
  
        Console.WriteLine("Length of the shortest"
                          + "supersequence is "
                          + shortestSuperSequence(X, Y));
    }
}
  
// This code is contributed by Sam007


PHP




<?php
// PHP program to find length of the 
// shortest supersequence
  
// Function to find length of the
// shortest supersequence of X and Y.
function shortestSuperSequence($X, $Y)
{
    $m = strlen($X);
    $n = strlen($Y);
  
    // find lcs
    $l = lcs($X, $Y, $m, $n);
  
    // Result is sum of input string
    // lengths - length of lcs
    return ($m + $n - $l);
}
  
// Returns length of LCS
// for X[0..m - 1], Y[0..n - 1]
function lcs( $X, $Y, $m, $n)
{
    $L=array_fill(0, $m + 1, array_fill(0, $n + 1, 0));
  
    // Following steps build $L[m + 1][n + 1] 
    // in bottom up fashion. Note that 
    // $L[i][j] contains length of LCS of 
    // X[0..i - 1] and Y[0..j - 1]
    for ($i = 0; $i <= $m; $i++)
    {
        for ($j = 0; $j <= $n; $j++)
        {
            if ($i == 0 || $j == 0)
                $L[$i][$j] = 0;
  
            else if ($X[$i - 1] == $Y[$j - 1])
                $L[$i][$j] = $L[$i - 1][$j - 1] + 1;
  
            else
                $L[$i][$j] = max($L[$i - 1][$j],
                            $L[$i][$j - 1]);
        }
    }
  
    // $L[m][n] contains length of LCS
    // for X[0..n - 1] and Y[0..m - 1]
    return $L[$m][$n];
}
  
    // Driver code
    $X = "AGGTAB";
    $Y = "GXTXAYB";
      
    echo "Length of the shortest supersequence is ".
                shortestSuperSequence($X, $Y)."\n";
  
// This code is contributed by mits 
?>


Javascript




<script>
// javascript program to find length of
// the shortest supersequence   // Function to find length of the
// shortest supersequence of X and Y.
function shortestSuperSequence(X, Y)
{
    var m = X.length;
    var n = Y.length;
  
    // find lcs
    var l = lcs(X, Y, m, n);
  
    // Result is sum of input string
    // lengths - length of lcs
    return (m + n - l);
}
  
// Returns length of LCS
// for X[0..m - 1], Y[0..n - 1]
function lcs(X, Y , m , n)
{
    var L = Array(m+1).fill(0).map(x => Array(n+1).fill(0));
    var i, j;
  
    // Following steps build L[m + 1][n + 1]
    // in bottom up fashion. Note that
    // L[i][j] contains length of LCS
    // of X[0..i - 1]and Y[0..j - 1]
    for (i = 0; i <= m; i++) {
        for (j = 0; j <= n; j++) {
            if (i == 0 || j == 0)
                L[i][j] = 0;
  
            else if (X.charAt(i - 1) == Y.charAt(j - 1))
                L[i][j] = L[i - 1][j - 1] + 1;
  
            else
                L[i][j] = Math.max(L[i - 1][j],
                                   L[i][j - 1]);
        }
    }
  
    // L[m][n] contains length of LCS
    // for X[0..n - 1] and Y[0..m - 1]
    return L[m][n];
}
  
// Driver code
var X = "AGGTAB";
var Y = "GXTXAYB";
  
document.write("Length of the shortest "
                   + "supersequence is "
                   + shortestSuperSequence(X, Y));
  
// This code contributed by shikhasingrajput 
</script>


Output

Length of the shortest supersequence is 9

Time Complexity: O(m*n).
Auxiliary Space: O(m*n)

Method 2: A simple analysis yields below simple recursive solution.

Let X[0..m - 1] and Y[0..n - 1] be two 
strings and m and n be respective
lengths.

  if (m == 0) return n;
  if (n == 0) return m;

  // If last characters are same, then 
  // add 1 to result and
  // recur for X[]
  if (X[m - 1] == Y[n - 1])
     return 1 + SCS(X, Y, m - 1, n - 1);

  // Else find shortest of following two
  //  a) Remove last character from X and recur
  //  b) Remove last character from Y and recur
  else 
    return 1 + min( SCS(X, Y, m - 1, n), SCS(X, Y, m, n - 1) );

Below is simple naive recursive solution based on above recursive formula. 

C++




// A Naive recursive C++ program to find
// length of the shortest supersequence
#include <bits/stdc++.h>
using namespace std;
  
int superSeq(char* X, char* Y, int m, int n)
{
    if (!m)
        return n;
    if (!n)
        return m;
  
    if (X[m - 1] == Y[n - 1])
        return 1 + superSeq(X, Y, m - 1, n - 1);
  
    return 1
           + min(superSeq(X, Y, m - 1, n),
                 superSeq(X, Y, m, n - 1));
}
  
// Driver Code
int main()
{
    char X[] = "AGGTAB";
    char Y[] = "GXTXAYB";
    cout << "Length of the shortest supersequence is "
         << superSeq(X, Y, strlen(X), strlen(Y));
    return 0;
}


Java




// A Naive recursive Java program to find
// length of the shortest supersequence
import java.io.*;
class GFG {
    static int superSeq(String X, String Y, int m, int n)
    {
        if (m == 0)
            return n;
        if (n == 0)
            return m;
  
        if (X.charAt(m - 1) == Y.charAt(n - 1))
            return 1 + superSeq(X, Y, m - 1, n - 1);
  
        return 1
            + Math.min(superSeq(X, Y, m - 1, n),
                       superSeq(X, Y, m, n - 1));
    }
  
    // Driver code
    public static void main(String args[])
    {
        String X = "AGGTAB";
        String Y = "GXTXAYB";
        System.out.println(
            "Length of the shortest"
            + "supersequence is: "
            + superSeq(X, Y, X.length(), Y.length()));
    }
}
  
// This article is contributed by Sumit Ghosh


Python3




# A Naive recursive python program to find
# length of the shortest supersequence
  
  
def superSeq(X, Y, m, n):
    if (not m):
        return n
    if (not n):
        return m
  
    if (X[m - 1] == Y[n - 1]):
        return 1 + superSeq(X, Y, m - 1, n - 1)
  
    return 1 + min(superSeq(X, Y, m - 1, n),
                   superSeq(X, Y, m, n - 1))
  
  
# Driver Code
X = "AGGTAB"
Y = "GXTXAYB"
print("Length of the shortest supersequence is %d"
      % superSeq(X, Y, len(X), len(Y)))
  
# This code is contributed by Ansu Kumari


C#




// A Naive recursive C# program to find
// length of the shortest supersequence
using System;
  
class GFG {
    static int superSeq(String X, String Y, int m, int n)
    {
        if (m == 0)
            return n;
        if (n == 0)
            return m;
  
        if (X[m - 1] == Y[n - 1])
            return 1 + superSeq(X, Y, m - 1, n - 1);
  
        return 1
            + Math.Min(superSeq(X, Y, m - 1, n),
                       superSeq(X, Y, m, n - 1));
    }
  
    // Driver Code
    public static void Main()
    {
        String X = "AGGTAB";
        String Y = "GXTXAYB";
        Console.WriteLine(
            "Length of the shortest supersequence is: "
            + superSeq(X, Y, X.Length, Y.Length));
    }
}
  
// This code is contributed by Sam007


PHP




<?php
// A Naive recursive PHP program to find 
// length of the shortest supersequence 
  
function superSeq($X, $Y, $m, $n
    if (!$m
        return $n
    if (!$n
        return $m
  
    if ($X[$m - 1] == $Y[$n - 1]) 
        return 1 + superSeq($X, $Y, $m - 1, $n - 1); 
  
    return 1 + min(superSeq($X, $Y, $m - 1, $n), 
                   superSeq($X, $Y, $m, $n - 1)); 
  
// Driver Code 
$X = "AGGTAB"
$Y = "GXTXAYB"
echo "Length of the shortest supersequence is "
       superSeq($X, $Y, strlen($X), strlen($Y));
  
// This code is contributed by Ryuga
?>


Javascript




<script>
// A Naive recursive javascript program to find
// length of the shortest supersequence
  
function superSeq(X, Y , m , n)
{
    if (m == 0)
        return n;
    if (n == 0)
        return m;
  
    if (X.charAt(m - 1) == Y.charAt(n - 1))
        return 1 + superSeq(X, Y, m - 1, n - 1);
  
    return 1
        + Math.min(superSeq(X, Y, m - 1, n),
                   superSeq(X, Y, m, n - 1));
}
  
// Driver code
var X = "AGGTAB";
var Y = "GXTXAYB";
document.write(
    "Length of the shortest"
    + "supersequence is "
    + superSeq(X, Y, X.length, Y.length));
  
// This code contributed by Princi Singh
  
</script>


Output

Length of the shortest supersequence is 9

Time Complexity: O(2min(m, n)). Since there are overlapping subproblems
Auxiliary Space: O(min(m, n)), due to recursive call stack

Method 3: We can efficiently solve this recursive problem using Dynamic Programming.
Below is the Dynamic Programming-based implementation. 

C++




// A dynamic programming based C++ program to
// find length of the shortest supersequence
#include <bits/stdc++.h>
using namespace std;
  
// Returns length of the shortest
// supersequence of X and Y
int superSeq(char* X, char* Y, int m, int n)
{
    int dp[m + 1][n + 1];
  
    // Fill table in bottom up manner
    for (int i = 0; i <= m; i++) {
        for (int j = 0; j <= n; j++) {
            // Below steps follow above recurrence
            if (!i)
                dp[i][j] = j;
            else if (!j)
                dp[i][j] = i;
            else if (X[i - 1] == Y[j - 1])
                dp[i][j] = 1 + dp[i - 1][j - 1];
            else
                dp[i][j]
                    = 1 + min(dp[i - 1][j], dp[i][j - 1]);
        }
    }
  
    return dp[m][n];
}
  
// Driver Code
int main()
{
    char X[] = "AGGTAB";
    char Y[] = "GXTXAYB";
    cout << "Length of the shortest supersequence is "
         << superSeq(X, Y, strlen(X), strlen(Y));
    return 0;
}


Java




// A dynamic programming based Java program to
// find length of the shortest supersequence
import java.io.*;
class GFG {
  
    // Returns length of the shortest
    // supersequence of X and Y
    static int superSeq(String X, String Y, int m, int n)
    {
        int[][] dp = new int[m + 1][n + 1];
  
        // Fill table in bottom up manner
        for (int i = 0; i <= m; i++) {
            for (int j = 0; j <= n; j++) {
                // Below steps follow above recurrence
                if (i == 0)
                    dp[i][j] = j;
                else if (j == 0)
                    dp[i][j] = i;
                else if (X.charAt(i - 1) == Y.charAt(j - 1))
                    dp[i][j] = 1 + dp[i - 1][j - 1];
                else
                    dp[i][j] = 1
                               + Math.min(dp[i - 1][j],
                                          dp[i][j - 1]);
            }
        }
  
        return dp[m][n];
    }
  
    // Driver Code
    public static void main(String args[])
    {
        String X = "AGGTAB";
        String Y = "GXTXAYB";
        System.out.println(
            "Length of the shortest supersequence is "
            + superSeq(X, Y, X.length(), Y.length()));
    }
}
  
// This article is contributed by Sumit Ghosh


Python3




# A dynamic programming based python program
# to find length of the shortest supersequence
  
# Returns length of the shortest supersequence of X and Y
  
  
def superSeq(X, Y, m, n):
    dp = [[0] * (n + 2) for i in range(m + 2)]
  
    # Fill table in bottom up manner
    for i in range(m + 1):
        for j in range(n + 1):
  
            # Below steps follow above recurrence
            if (not i):
                dp[i][j] = j
            elif (not j):
                dp[i][j] = i
  
            elif (X[i - 1] == Y[j - 1]):
                dp[i][j] = 1 + dp[i - 1][j - 1]
  
            else:
                dp[i][j] = 1 + min(dp[i - 1][j],
                                   dp[i][j - 1])
  
    return dp[m][n]
  
  
# Driver Code
X = "AGGTAB"
Y = "GXTXAYB"
print("Length of the shortest supersequence is %d"
      % superSeq(X, Y, len(X), len(Y)))
  
# This code is contributed by Ansu Kumari


C#




// A dynamic programming based C# program to
// find length of the shortest supersequence
using System;
  
class GFG {
    // Returns length of the shortest
    // supersequence of X and Y
    static int superSeq(String X, String Y, int m, int n)
    {
        int[, ] dp = new int[m + 1, n + 1];
  
        // Fill table in bottom up manner
        for (int i = 0; i <= m; i++) {
            for (int j = 0; j <= n; j++) {
                // Below steps follow above recurrence
                if (i == 0)
                    dp[i, j] = j;
                else if (j == 0)
                    dp[i, j] = i;
                else if (X[i - 1] == Y[j - 1])
                    dp[i, j] = 1 + dp[i - 1, j - 1];
                else
                    dp[i, j] = 1
                               + Math.Min(dp[i - 1, j],
                                          dp[i, j - 1]);
            }
        }
  
        return dp[m, n];
    }
  
    // Driver code
    public static void Main()
    {
        String X = "AGGTAB";
        String Y = "GXTXAYB";
        Console.WriteLine(
            "Length of the shortest supersequence is "
            + superSeq(X, Y, X.Length, Y.Length));
    }
}
  
// This code is contributed by Sam007


PHP




<?php
// A dynamic programming based PHP program to 
// find length of the shortest supersequence
  
// Returns length of the shortest 
// supersequence of X and Y
function superSeq($X, $Y, $m, $n)
{
    $dp = array_fill(0, $m + 1, 
          array_fill(0, $n + 1, 0));
  
    // Fill table in bottom up manner
    for ($i = 0; $i <= $m; $i++)
    {
        for ($j = 0; $j <= $n; $j++)
        {
              
            // Below steps follow above recurrence
            if (!$i)
                $dp[$i][$j] = $j;
            else if (!$j)
                $dp[$i][$j] = $i;
            else if ($X[$i - 1] == $Y[$j - 1])
                    $dp[$i][$j] = 1 + $dp[$i - 1][$j - 1];
            else
                    $dp[$i][$j] = 1 + min($dp[$i - 1][$j], 
                                          $dp[$i][$j - 1]);
        }
    }
  
    return $dp[$m][$n];
}
  
// Driver Code
$X = "AGGTAB";
$Y = "GXTXAYB";
echo "Length of the shortest supersequence is "
      superSeq($X, $Y, strlen($X), strlen($Y));
  
// This code is contributed by mits
?>


Javascript




<script>
// A dynamic programming based javascript program to
// find length of the shortest supersequence   
// Returns length of the shortest
    // supersequence of X and Y
    function superSeq(X, Y, m, n)
    {
        var dp = Array(m+1).fill(0).map(x => Array(n+1).fill(0));
  
        // Fill table in bottom up manner
        for (var i = 0; i <= m; i++)
        {
            for (var j = 0; j <= n; j++) 
            {
              
                // Below steps follow above recurrence
                if (i == 0)
                    dp[i][j] = j;
                else if (j == 0)
                    dp[i][j] = i;
                else if (X.charAt(i - 1) == Y.charAt(j - 1))
                    dp[i][j] = 1 + dp[i - 1][j - 1];
                else
                    dp[i][j] = 1
                               + Math.min(dp[i - 1][j],
                                          dp[i][j - 1]);
            }
        }
        return dp[m][n];
    }
  
    // Driver Code
    var X = "AGGTAB";
    var Y = "GXTXAYB";
    document.write(
        "Length of the shortest supersequence is "
        + superSeq(X, Y, X.length, Y.length));
  
// This code is contributed by 29AjayKumar 
</script>


Output

Length of the shortest supersequence is 9

Time Complexity: O(m*n). 
Auxiliary Space: O(m*n)
Thanks to Gaurav Ahirwar for suggesting this solution. 

Method 4 (Top Down Memoization Approach):
The idea is to follow the simple recursive solution, and use a lookup table to avoid re-computations. Before computing the result for input, we check if the result is already computed or not. If already computed, we return that result.

C++




// A dynamic programming based C++ program
// to find length of the shortest supersequence
  
// Returns length of the
// shortest supersequence of X and Y
#include <bits/stdc++.h>
using namespace std;
  
int superSeq(string X, string Y, int n, int m,
             vector<vector<int> > lookup)
{
  
    if (m == 0 || n == 0) {
        lookup[n][m] = n + m;
    }
  
    if (lookup[n][m] == 0)
        if (X[n - 1] == Y[m - 1]) {
            lookup[n][m]
                = superSeq(X, Y, n - 1, m - 1, lookup) + 1;
        }
  
        else {
            lookup[n][m]
                = min(superSeq(X, Y, n - 1, m, lookup) + 1,
                      superSeq(X, Y, n, m - 1, lookup) + 1);
        }
  
    return lookup[n][m];
}
  
// Driver Code
int main()
{
    string X = "AGGTB";
    string Y = "GXTXAYB";
  
    vector<vector<int> > lookup(
        X.size() + 1, vector<int>(Y.size() + 1, 0));
  
    cout << "Length of the shortest supersequence is "
         << superSeq(X, Y, X.size(), Y.size(), lookup)
         << endl;
  
    return 0;
}
  
    // This code is contributed by niraj gusain


Java




// A dynamic programming based JAVA program
// to find length of the shortest supersequence
  
// Returns length of the
// shortest supersequence of X and Y
import java.util.*;
  
class GFG {
  
    static int superSeq(String X, String Y, int n, int m,
                        int[][] lookup)
    {
  
        if (m == 0 || n == 0) {
            lookup[n][m] = n + m;
        }
  
        if (lookup[n][m] == 0)
            if (X.charAt(n - 1) == Y.charAt(m - 1)) {
                lookup[n][m]
                    = superSeq(X, Y, n - 1, m - 1, lookup)
                      + 1;
            }
  
            else {
                lookup[n][m] = Math.min(
                    superSeq(X, Y, n - 1, m, lookup) + 1,
                    superSeq(X, Y, n, m - 1, lookup) + 1);
            }
  
        return lookup[n][m];
    }
  
    // Driver Code
    public static void main(String[] args)
    {
        String X = "AGGTB";
        String Y = "GXTXAYB";
  
        int[][] lookup
            = new int[X.length() + 1][Y.length() + 1];
  
        System.out.print(
            "Length of the shortest supersequence is "
            + superSeq(X, Y, X.length(), Y.length(), lookup)
            + "\n");
    }
}
  
// This code contributed by umadevi9616


Python3




# A dynamic programming based python program 
# to find length of the shortest supersequence
  
# Returns length of the 
# shortest supersequence of X and Y
  
def superSeq(X,Y,n,m,lookup):
      
    if m==0 or n==0:
        lookup[n][m] = n+m
  
    if (lookup[n][m] == 0):     
        if X[n-1]==Y[m-1]:
            lookup[n][m] = superSeq(X,Y,n-1,m-1,lookup)+1
      
        else:
            lookup[n][m] = min(superSeq(X,Y,n-1,m,lookup)+1,
                               superSeq(X,Y,n,m-1,lookup)+1)
      
    return lookup[n][m]
      
  
  
# Driver Code
X = "AGGTAB"
Y = "GXTXAYB"
  
lookup = [[0 for j in range(len(Y)+1)]for i in range(len(X)+1)]
print("Length of the shortest supersequence is {}"
      .format(superSeq(X,Y,len(X),len(Y),lookup)))
  
# This code is contributed by Tanmay Ambadkar


C#




// A dynamic programming based C# program
// to find length of the shortest supersequence
  
// Returns length of the
// shortest supersequence of X and Y
using System;
  
public class GFG {
  
    static int superSeq(String X, String Y, int n, 
                        int m, int[,] lookup)
    {
  
        if (m == 0 || n == 0) {
            lookup[n, m] = n + m;
        }
  
        if (lookup[n, m] == 0)
            if (X[n - 1] == Y[m - 1]) {
                lookup[n, m] = superSeq(X, Y, n - 1, 
                                       m - 1, lookup) + 1;
            }
  
            else {
                lookup[n, m] = Math.Min(superSeq(X, Y, n - 1, m, lookup) + 
                                       1, superSeq(X, Y, n, m - 1, lookup) + 
                                       1);
            }
  
        return lookup[n, m];
    }
  
    // Driver Code
    public static void Main(String[] args) {
        String X = "AGGTB";
        String Y = "GXTXAYB";
  
        int[,] lookup = new int[X.Length + 1,Y.Length + 1];
  
        Console.Write(
                "Length of the shortest supersequence is " +
          superSeq(X, Y, X.Length, Y.Length, lookup) + "\n");
    }
}
  
// This code is contributed by gauravrajput1 


Javascript




<script>
// A dynamic programming based JavaScript program
// to find length of the shortest supersequence
  
// Returns length of the
// shortest supersequence of X and Y
  
    function superSeq( X,  Y , n , m,  lookup) {
  
        if (m == 0 || n == 0) {
            lookup[n][m] = n + m;
        }
  
        if (lookup[n][m] == 0)
            if (X.charAt(n - 1) == Y.charAt(m - 1)) {
                lookup[n][m] = superSeq(X, Y, n - 1, m - 1, lookup) + 1;
            }
  
            else {
                lookup[n][m] = Math.min(superSeq(X, Y, n - 1, m, lookup) + 1, superSeq(X, Y, n, m - 1, lookup) + 1);
            }
  
        return lookup[n][m];
    }
  
    // Driver Code
      
        var X = "AGGTB";
        var Y = "GXTXAYB";
  
        var lookup = Array(X.length + 1).fill().map(()=>Array(Y.length + 1).fill(0));
  
        document.write(
                "Length of the shortest supersequence is "
                + superSeq(X, Y, X.length, Y.length, lookup) + "\n");
  
// This code is contributed by gauravrajput1
</script>


Output

Length of the shortest supersequence is 9

Time Complexity: O(n*m)
Auxiliary Space: O(n*m)

Exercise: 
Extend the above program to print shortest super sequence also using function to print LCS
Please refer Printing Shortest Common Supersequence for solution
References: 
https://en.wikipedia.org/wiki/Shortest_common_supersequence
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments