Given an array of integers ‘arr’ and a number x, the task is to sort all the elements which are multiples of x of the array in ascending order in their relative positions i.e. other positions of the other elements must not be affected.
Examples:
Input: arr[] = {10, 5, 8, 2, 15}, x = 5
Output: 5 10 8 2 15
We rearrange all multiples of 5 in increasing order, keeping other elements same.Input: arr[] = {100, 12, 25, 50, 5}, x = 5
Output: 5 12 25 50 100
Approach:
- Traverse the array and check if the number is multiple of x. If it is, store it in a vector.
- Then, sort the vector in ascending order.
- Again traverse the array and replace the elements which are multiples of 5 with the vector elements one by one.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to sort all the // multiples of x from the // array in ascending order void sortMultiples( int arr[], int n, int x) { vector< int > v; // Insert all multiples of 5 to a vector for ( int i = 0; i < n; i++) if (arr[i] % x == 0) v.push_back(arr[i]); // Sort the vector sort(v.begin(), v.end()); int j = 0; // update the array elements for ( int i = 0; i < n; i++) { if (arr[i] % x == 0) arr[i] = v[j++]; } } // Driver code int main() { int arr[] = { 125, 3, 15, 6, 100, 5 }; int x = 5; int n = sizeof (arr) / sizeof (arr[0]); sortMultiples(arr, n, x); // Print the result for ( int i = 0; i < n; i++) { cout << arr[i] << " " ; } return 0; } |
Java
import java.util.Collections; import java.util.Vector; // Java implementation of the approach class GFG { // Function to sort all the // multiples of x from the // array in ascending order static void sortMultiples( int arr[], int n, int x) { Vector<Integer> v = new Vector<Integer>(); // Insert all multiples of 5 to a vector for ( int i = 0 ; i < n; i++) { if (arr[i] % x == 0 ) { v.add(arr[i]); } } // Sort the vector Collections.sort(v); //sort(v.begin(), v.end()); int j = 0 ; // update the array elements for ( int i = 0 ; i < n; i++) { if (arr[i] % x == 0 ) { arr[i] = v.get(j++); } } } // Driver code public static void main(String[] args) { int arr[] = { 125 , 3 , 15 , 6 , 100 , 5 }; int x = 5 ; int n = arr.length; sortMultiples(arr, n, x); // Print the result for ( int i = 0 ; i < n; i++) { System.out.print(arr[i]+ " " ); } } } // This code is contributed by Rajput-Ji |
Python3
# Python 3 implementation of the approach # Function to sort all the multiples of x # from the array in ascending order def sortMultiples(arr, n, x): v = [] # Insert all multiples of 5 to a vector for i in range ( 0 , n, 1 ): if (arr[i] % x = = 0 ): v.append(arr[i]) # Sort the vector v.sort(reverse = False ) j = 0 # update the array elements for i in range ( 0 , n, 1 ): if (arr[i] % x = = 0 ): arr[i] = v[j] j + = 1 # Driver code if __name__ = = '__main__' : arr = [ 125 , 3 , 15 , 6 , 100 , 5 ] x = 5 n = len (arr) sortMultiples(arr, n, x) # Print the result for i in range ( 0 , n, 1 ): print (arr[i], end = " " ) # This code is contributed by # Surendra _Gangwar |
C#
// C# implementation of the approach using System; using System.Collections.Generic; class GFG { // Function to sort all the // multiples of x from the // array in ascending order static void sortMultiples( int []arr, int n, int x) { List< int > v = new List< int >(); int i; // Insert all multiples of 5 to a vector for (i = 0; i < n; i++) if (arr[i] % x == 0) v.Add(arr[i]); // Sort the vector v.Sort(); int j = 0; // update the array elements for (i = 0; i < n; i++) { if (arr[i] % x == 0) arr[i] = v[j++]; } } // Driver code public static void Main() { int []arr = {125, 3, 15, 6, 100, 5}; int x = 5; int n = arr.Length; sortMultiples(arr, n, x); // Print the result for ( int i = 0; i < n; i++) { Console.Write(arr[i] + " " ); } } } // This code is contributed by // Shivi_Aggarwal |
Javascript
<script> // JavaScript implementation of the approach // Function to sort all the // multiples of x from the // array in ascending order function sortMultiples(arr, n, x) { var v = []; // Insert all multiples of 5 to a vector for ( var i = 0; i < n; i++) { if (arr[i] % x == 0) { v.push(arr[i]); } } // Sort the vector v.sort((a, b) => a - b); var j = 0; // update the array elements for ( var i = 0; i < n; i++) { if (arr[i] % x == 0) arr[i] = v[j++]; } } // Driver code var arr = [ 125, 3, 15, 6, 100, 5 ]; var x = 5; var n = arr.length; sortMultiples(arr, n, x); // Print the result for ( var i = 0; i < n; i++) { document.write(arr[i] + " " ); } // This code is contributed by rdtank </script> |
5 3 15 6 100 125
Complexity Analysis:
- Time Complexity: O(N*logN), as we are using inbuilt sort function which cost the afore mentioned time.
- Auxiliary Space: O(N), as we are using extra space for array/vector v.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!