Saturday, November 16, 2024
Google search engine
HomeData Modelling & AIProgram to print prime numbers from 1 to N.

Program to print prime numbers from 1 to N.

Given a number N, the task is to print the prime numbers from 1 to N.
Examples: 

Input: N = 10
Output: 2, 3, 5, 7
Input: N = 5
Output: 2, 3, 5

Algorithm to print prime numbers:  

  • First, take the number N as input.
  • Then use a for loop to iterate the numbers from 1 to N
  • Then check for each number to be a prime number. If it is a prime number, print it.

Approach 1: Print prime numbers using loop.

Now, according to formal definition, a number ‘n’ is prime if it is not divisible by any number other than 1 and n. In other words a number is prime if it is not divisible by any number from 2 to n-1. so, we have to run a loop from 2 to n-1 and If a number is divisible by any number from 2 to n-1 it is not a prime number.

Below is the implementation of the above approach:  

C++




// C++ program to display Prime numbers till N
#include <bits/stdc++.h>
using namespace std;
 
// function to check if a given number is prime
bool isPrime(int n)
{
    // since 0 and 1 is not prime return false.
    if (n == 1 || n == 0)
        return false;
 
    // Run a loop from 2 to n-1
    for (int i = 2; i < n; i++) {
        // if the number is divisible by i, then n is not a
        // prime number.
        if (n % i == 0)
            return false;
    }
    // otherwise, n is prime number.
    return true;
}
 
// Driver code
int main()
{
    int N = 100;
 
    // check for every number from 1 to N
    for (int i = 1; i <= N; i++) {
        // check if current number is prime
        if (isPrime(i))
            cout << i << " ";
    }
 
    return 0;
}


C




// C program to display Prime numbers till N
#include <stdbool.h>
#include <stdio.h>
 
// function to check if a given number is prime
bool isPrime(int n)
{
    // since 0 and 1 is not prime return false.
    if (n == 1 || n == 0)
        return false;
 
    // Run a loop from 2 to n-1
    for (int i = 2; i < n; i++) {
        // if the number is divisible by i, then n is not a
        // prime number.
        if (n % i == 0)
            return false;
    }
    // otherwise, n is prime number.
    return true;
}
 
// Driver code
int main()
{
    int N = 100;
 
    // check for every number from 1 to N
    for (int i = 1; i <= N; i++) {
        // check if current number is prime
        if (isPrime(i))
            printf("%d ", i);
    }
 
    return 0;
}
 
// This code is contributed by Sania Kumari Gupta


Java




// Java program to display Prime numbers till N
class GFG
{
      //function to check if a given number is prime
     static boolean isPrime(int n){
          //since 0 and 1 is not prime return false.
          if(n==1||n==0)return false;
   
          //Run a loop from 2 to n-1
          for(int i=2; i<n; i++){
            // if the number is divisible by i, then n is not a prime number.
                if(n%i==0)return false;
          }
          //otherwise, n is prime number.
          return true;
    }
     
 
    // Driver code
    public static void main (String[] args)
    {
        int N = 100;
        //check for every number from 1 to N
        for(int i=1; i<=N; i++){
            //check if current number is prime
            if(isPrime(i)) {
                System.out.print(i + " ");
            }
        }
 
    }
}


Python3




# Python3 program to display Prime numbers till N
 
#function to check if a given number is prime
def isPrime(n):
  #since 0 and 1 is not prime return false.
  if(n==1 or n==0):
    return False
   
  #Run a loop from 2 to n-1
  for i in range(2,n):
    #if the number is divisible by i, then n is not a prime number.
    if(n%i==0):
      return False
   
  #otherwise, n is prime number.
  return True
 
 
 
# Driver code
N = 100;
#check for every number from 1 to N
for i in range(1,N+1):
  #check if current number is prime
  if(isPrime(i)):
    print(i,end=" ")


C#




// C# program to display Prime numbers till N
using System;
     
class GFG
{
   
     //function to check if a given number is prime
     static bool isPrime(int n){
        //since 0 and 1 is not prime return false.
        if(n==1||n==0) return false;
 
        //Run a loop from 2 to n-1
        for(int i=2; i<n; i++) {
            // if the number is divisible by i, then n is not a prime number.
            if(n%i==0) return false;
        }
      //otherwise, n is prime number.
      return true;
    }
 
    // Driver code
    public static void Main (String[] args)
    {
        int N = 100;
        //check for every number from 1 to N
        for(int i=1; i<=N; i++) {
          //check if current number is prime
            if(isPrime(i)) {
              Console.Write(i + " ");
            }
        }
 
    }
}
 
// This code is contributed by Rajput-Ji


Javascript




<script>
 
 
// JavaScript program to display Prime numbers till N
 
// function to check if a given number is prime
function isPrime( n)
{
      // since 0 and 1 is not prime return false.
      if(n == 1 || n == 0) return false;
   
      // Run a loop from 2 to n-1
      for(var i = 2; i < n; i++)
      {
       
        // if the number is divisible by i, then n is not a prime number.
        if(n % i == 0) return false;
      }
      // otherwise, n is prime number.
      return true;
}
 
 
// Driver code
var N = 100;
 
// check for every number from 1 to N
  for(var i = 1; i <= N; i++)
  {
      // check if current number is prime
      if(isPrime(i)) {
        console.log( i );
      }
}
 
// This code is contributed by ukasp.
</script>


Output

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 









Time Complexity: O(N^2), 
Auxiliary Space: O(1)

Approach 2: Optimize the first approach

For checking if a number is prime or not do we really need to iterate through all the number from 2 to n-1? We already know that a number ‘n’ cannot be divided by any number greater than ‘n/2’. So, according to this logic we only need to iterate through 2 to n/2 since number greater than n/2 cannot divide n.

C++




// C++ program to display Prime numbers till N
#include <bits/stdc++.h>
using namespace std;
 
//function to check if a given number is prime
bool isPrime(int n){
    //since 0 and 1 is not prime return false.
    if(n==1||n==0) return false;
 
    //Run a loop from 2 to n/2.
    for(int i=2; i<=n/2; i++) {
          // if the number is divisible by i, then n is not a prime number.
          if(n%i==0) return false;
    }
    //otherwise, n is prime number.
    return true;
}
 
 
// Driver code
int main()
{
    int N = 100;
 
    //check for every number from 1 to N
      for(int i=1; i<=N; i++){
        //check if current number is prime
        if(isPrime(i)) {
          cout << i << " ";
        }
    }
 
    return 0;
}


Java




// Java program to display
// Prime numbers till N
class GFG
{
     //function to check if a given number is prime
     static boolean isPrime(int n){
          //since 0 and 1 is not prime return false.
          if(n==1||n==0) return false;
 
        //Run a loop from 2 to n-1
        for(int i=2; i<=n/2; i++){
            // if the number is divisible by i, then n is not a prime number.
            if(n%i==0)return false;
        }
        //otherwise, n is prime number.
        return true;
    }
     
 
    // Driver code
    public static void main (String[] args)
    {
        int N = 100;
        //check for every number from 1 to N
        for(int i=1; i<=N; i++){
            //check if current number is prime
            if(isPrime(i)) {
              System.out.print(i + " ");
            }
        }
 
    }
}


Python3




# Python3 program to display Prime numbers till N
 
#function to check if a given number is prime
def isPrime(n):
  #since 0 and 1 is not prime return false.
  if(n==1 or n==0):
    return False
   
  #Run a loop from 2 to n/2
  for i in range(2,(n//2)+1):
    #if the number is divisible by i, then n is not a prime number.
    if(n%i==0):
      return False
   
  #otherwise, n is prime number.
  return True
 
 
 
# Driver code
N = 100;
#check for every number from 1 to N
for i in range(1,N+1):
  #check if current number is prime
  if(isPrime(i)):
    print(i,end=" ")


C#




// C# program to display
// Prime numbers till N
using System;
     
class GFG
{
   
 //function to check if a given number is prime
 static bool isPrime(int n){
      //since 0 and 1 is not prime return false.
     if(n==1||n==0)return false;
   
      //Run a loop from 2 to n/2.
      for(int i=2; i<=n/2; i++){
        // if the number is divisible by i, then n is not a prime number.
        if(n%i==0)return false;
      }
  //otherwise, n is prime number.
  return true;
}
 
// Driver code
public static void Main (String[] args)
{
    int N = 100;
    //check for every number from 1 to N
      for(int i=1; i<=N; i++){
      //check if current number is prime
      if(isPrime(i)) {
        Console.Write(i + " ");
      }
    }
     
}
}
 
// This code is contributed by Rajput-Ji


Javascript




<script>
// Javascript program to display Prime numbers till N
 
// function to check if a given number is prime
function isPrime(n)
{
 
    // since 0 and 1 is not prime return false.
    if(n == 1 || n == 0) return false;
 
    // Run a loop from 2 to n/2.
    for(let i = 2; i <= n / 2; i++)
    {
          // if the number is divisible by i, then n is not a prime number.
          if(n % i == 0) return false;
    }
     
    // otherwise, n is prime number.
    return true;
}
 
 
// Driver code
let N = 100;
 
// check for every number from 1 to N
for(let i = 1; i <= N; i++)
{
    // check if current number is prime
    if(isPrime(i))
    {
        document.write(i + " ");
    }
}
 
// This code is contributed by shubham348.
</script>


Output

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 









Time Complexity: O(N2), 
Auxiliary Space: O(1), since no extra space has been taken.

Approach 3:

If a number ‘n’ is not divided by any number less than or equals to the square root of n then, it will not be divided by any other number greater than the square root of n. So, we only need to check up to the square root of n.

C++




// C++ program to display Prime numbers till N
#include <bits/stdc++.h>
using namespace std;
 
//function to check if a given number is prime
bool isPrime(int n){
  //since 0 and 1 is not prime return false.
  if(n==1||n==0)return false;
   
  //Run a loop from 2 to square root of n.
  for(int i=2; i*i<=n; i++){
    // if the number is divisible by i, then n is not a prime number.
    if(n%i==0)return false;
  }
  //otherwise, n is prime number.
  return true;
}
 
 
// Driver code
int main()
{
    int N = 100;
 
    //check for every number from 1 to N
      for(int i=1; i<=N; i++){
      //check if current number is prime
      if(isPrime(i)) {
        cout << i << " ";
      }
    }
 
    return 0;
}


Java




// Java program to display
// Prime numbers till N
class GFG
{
  //function to check if a given number is prime
 static boolean isPrime(int n){
  //since 0 and 1 is not prime return false.
  if(n==1||n==0)return false;
   
  //Run a loop from 2 to square root of n
  for(int i=2; i*i<=n; i++){
    // if the number is divisible by i, then n is not a prime number.
    if(n%i==0)return false;
  }
  //otherwise, n is prime number.
  return true;
}
     
 
// Driver code
public static void main (String[] args)
{
    int N = 100;
        //check for every number from 1 to N
      for(int i=1; i<=N; i++){
      //check if current number is prime
      if(isPrime(i)) {
        System.out.print(i + " ");
      }
    }
     
}
}


Python3




# Python3 program to display Prime numbers till N
 
#function to check if a given number is prime
def isPrime(n):
  #since 0 and 1 is not prime return false.
  if(n==1 or n==0):
    return False
   
  #Run a loop from 2 to square root of n.
  for i in range(2,int(n**(1/2))+1):
    #if the number is divisible by i, then n is not a prime number.
    if(n%i==0):
      return False
   
  #otherwise, n is prime number.
  return True
 
 
 
# Driver code
N = 100;
#check for every number from 1 to N
for i in range(1,N+1):
  #check if current number is prime
  if(isPrime(i)):
    print(i,end=" ")


C#




// C# program to display
// Prime numbers till N
using System;
     
class GFG
{
   
 //function to check if a given number is prime
 static bool isPrime(int n){
      //since 0 and 1 is not prime return false.
     if(n==1||n==0)return false;
   
      //Run a loop from 2 to square root of n.
      for(int i=2; i*i<=n; i++){
        // if the number is divisible by i, then n is not a prime number.
        if(n%i==0)return false;
      }
  //otherwise, n is prime number.
  return true;
}
 
// Driver code
public static void Main (String[] args)
{
    int N = 100;
    //check for every number from 1 to N
      for(int i=1; i<=N; i++){
      //check if current number is prime
      if(isPrime(i)) {
        Console.Write(i + " ");
      }
    }
     
}
}
 
// This code is contributed by Rajput-Ji


Javascript




<script>
// JavaScript program to display Prime numbers till N
 
// function to check if a given number is prime
const isPrime = (n) => {
 
    // since 0 and 1 is not prime return false.
    if(n === 1||n === 0)return false;
 
    // Run a loop from 2 to square root of n.
    for(let i = 2; i <= Math.floor(Math.sqrt(n)); i++)
    {
     
      // if the number is divisible by i, then n is not a prime number.
      if(n % i == 0)return false;
    }
     
    // otherwise, n is prime number.
    return true;
  }
   
   
  // Driver code
   
  let N = 100;
   
  // check for every number from 1 to N
  for(let i=1; i<=N; i++)
  {
   
      // check if current number is prime
      if(isPrime(i)) {
          document.write(i);
      }
  }
   
  // This code is contributed by shinjanpatra
  </script>


Output

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 









Time Complexity: O(N^(3/2)),
Auxiliary Space: O(1)

Approach 4: Sieve of Eratosthenes Algorithm

  1. Create a boolean array is_prime of size (N+1), initialized with true values for all elements.
  2. Loop through the array is_prime from 2 to the square root of N (inclusive), and for each prime number p found in the loop:
    • If is_prime[p] is true, loop through the multiples of p from p*p up to N, and mark them as false in the is_prime array.
  3. Loop through the array is_prime from 2 to N (inclusive), and for each index i where is_prime[i] is true, print i as a prime number.

C++




// CPP program to print prime numbers from 1 to N
// using Sieve of Eratosthenes
#include <bits/stdc++.h>
using namespace std;
 
void sieve_of_eratosthenes(int n)
{
    bool is_prime[n + 1];
    memset(is_prime, true, sizeof(is_prime));
    is_prime[0] = is_prime[1] = false;
    for (int p = 2; p * p <= n; p++) {
        if (is_prime[p]) {
            for (int i = p * p; i <= n; i += p) {
                is_prime[i] = false;
            }
        }
    }
    for (int i = 2; i <= n; i++) {
        if (is_prime[i]) {
            cout << i << " ";
        }
    }
}
 
int main()
{
    sieve_of_eratosthenes(100);
    return 0;
}
 
// This code is contributed by Susobhan Akhuli


Java




// Java program to print prime numbers from 1 to N
// using Sieve of Eratosthenes
 
import java.util.*;
 
public class GFG {
    public static void sieve_of_eratosthenes(int n)
    {
        boolean[] is_prime = new boolean[n + 1];
        Arrays.fill(is_prime, true);
        is_prime[0] = is_prime[1] = false;
        for (int p = 2; p * p <= n; p++) {
            if (is_prime[p]) {
                for (int i = p * p; i <= n; i += p) {
                    is_prime[i] = false;
                }
            }
        }
        for (int i = 2; i <= n; i++) {
            if (is_prime[i]) {
                System.out.print(i + " ");
            }
        }
    }
 
    public static void main(String[] args)
    {
        sieve_of_eratosthenes(100);
    }
}
 
// This code is contributed by Susobhan Akhuli


Python3




# Python program to print prime numbers from 1 to N
# using Sieve of Eratosthenes
 
def sieve_of_eratosthenes(n):
    is_prime = [True] * (n+1)
    is_prime[0] = is_prime[1] = False
    for p in range(2, int(n**0.5)+1):
        if is_prime[p]:
            for i in range(p*p, n+1, p):
                is_prime[i] = False
    for i in range(2, n+1):
        if is_prime[i]:
            print(i, end=' ')
 
 
sieve_of_eratosthenes(100)
 
# This code is contributed by Susobhan Akhuli


C#




// C# program to print prime numbers from 1 to N
// using Sieve of Eratosthenes
using System;
 
public class GFG { // Function to find prime numbers from 1
                   // to N
    static public void sieve_of_eratosthenes(int n)
    {
        // Create a boolean array "is_prime[0..n]" and
        // initialize all entries as true. A value in
        // is_prime[i] will finally be false if i is Not a
        // prime, else true
        bool[] is_prime = new bool[n + 1];
        Array.Fill(is_prime, true);
 
        // Mark 0 and 1 as false as they are not prime
        is_prime[0] = is_prime[1] = false;
 
        // Traverse through all numbers starting from 2, as
        // 1 is not prime
        for (int p = 2; p * p <= n; p++) {
            // If is_prime[p] is not changed, then it is a
            // prime
            if (is_prime[p]) {
                // Update all multiples of p as not prime
                for (int i = p * p; i <= n; i += p) {
                    is_prime[i] = false;
                }
            }
        }
 
        // Print all prime numbers
        for (int i = 2; i <= n; i++) {
            if (is_prime[i]) {
                Console.Write(i + " ");
            }
        }
    }
 
    static public void Main()
    {
        // Call sieve_of_eratosthenes() function with value
        // 100
        sieve_of_eratosthenes(100);
    }
}


Javascript




// JavaScript program to print prime numbers from 1 to N
// using Sieve of Eratosthenes
 
function sieve_of_eratosthenes(n) {
// Create a boolean array "is_prime[0..n]" and
// initialize all entries as true. A value in
// is_prime[i] will finally be false if i is Not a
// prime, else true
let is_prime = new Array(n + 1).fill(true);
 
// Mark 0 and 1 as false as they are not prime
is_prime[0] = is_prime[1] = false;
 
// Traverse through all numbers starting from 2, as
// 1 is not prime
for (let p = 2; p * p <= n; p++) {
// If is_prime[p] is not changed, then it is a
// prime
if (is_prime[p]) {
// Update all multiples of p as not prime
for (let i = p * p; i <= n; i += p) {
is_prime[i] = false;
}
}
}
 
// Print all prime numbers
for (let i = 2; i <= n; i++) {
if (is_prime[i]) {
console.log(i);
}
}
}
 
// Call sieve_of_eratosthenes() function with value
// 100
sieve_of_eratosthenes(100);


Output

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 









Complexity Analysis:

Time complexity:

  • The outer loop runs from 2 to the square root of N, so it runs in O(sqrt(N)) time.
  • The inner loop runs from p*p to N, and for each prime number p, it eliminates the multiples of p up to N. Therefore, the inner loop runs at most N/p times for each prime number p, so it has a time complexity of O(N/2 + N/3 + N/5 + …), which is approximately O(N log(log(N))). This is because the sum of the reciprocals of the prime numbers up to N is asymptotically bounded by log(log(N)).
  • The final loop runs from 2 to N, so it has a time complexity of O(N).
  • Therefore, the overall time complexity of the algorithm is O(N log(log(N))).

Space complexity:

  • The algorithm uses an array of size N+1 to store the boolean values of whether each number is prime or not. Therefore, the space complexity is O(N).

In summary, the Sieve of Eratosthenes algorithm has a time complexity of O(N log(log(N))) and a space complexity of O(N) to print all the prime numbers from 1 to N.

To know more check  Sieve of Eratosthenes.

Optimized Sieve of Eratosthenes Method: (Bitwise Sieve Method)

One optimization of the Sieve of Eratosthenes method is, we have skipped all even numbers altogether. We reduce the size of the prime array to half. We also reduce all iterations to half.

Steps:

  1. Create a boolean array prime of size (n/2), initialized with false values for all elements.
  2. As except 2, there are not any even prime numbers, so we skip 2 and then check for only odd numbers, so that we just have to check half elements.
  3. Inside the loop:
    1. In each iteration, if prime[i/2] is false, then loop through the multiples of i from i*i up to N with increment of 2*i, and mark them as true in the prime array.
  4. Finally, first print 2 and then loop through the array prime from 3 to N (inclusive), and for each index i/2 where prime[i/2] is false, print i as a prime number.

Below is the implementation:

C++




// CPP program to print prime numbers from 1 to N
// using simple optimized Sieve of Eratosthenes
// to reduce size of prime array to half and
// reducing iterations.
#include <bits/stdc++.h>
using namespace std;
 
void normalSieve(int n)
{
    // prime[i] is going to store true if
    // if i*2 + 1 is composite.
    bool prime[n / 2];
    memset(prime, false, sizeof(prime));
 
    // 2 is the only even prime so we can
    // ignore that. Loop starts from 3.
    for (int i = 3; i * i < n; i += 2) {
        // If i is prime, mark all its
        // multiples as composite
        if (prime[i / 2] == false)
            for (int j = i * i; j < n; j += i * 2)
                prime[j / 2] = true;
    }
 
    // writing 2 separately
    printf("2 ");
 
    // Printing other primes
    for (int i = 3; i < n; i += 2)
        if (prime[i / 2] == false)
            printf("%d ", i);
}
 
// Driver code
int main()
{
    int n = 100;
    normalSieve(n);
    return 0;
}
 
// This code is contributed by Susobhan Akhuli


Java




import java.util.Arrays;
 
class GFG {
    // Function to find prime numbers up to 'n' using
   // the normal Sieve of Eratosthenes algorithm
    public static void normalSieve(int n) {
        // Create a boolean array to mark non-prime numbers,
      // starting from 3 up to n
        // Since we only need to consider odd numbers
      // (except for 2), we use n/2 elements in the array.
        boolean[] prime = new boolean[n / 2];
 
        // Initialize all elements as false
      // (considering all numbers as potential primes initially)
        Arrays.fill(prime, false);
 
        // Iterate over odd numbers starting from 3
      // up to the square root of n
        // Since any composite number has a prime factor
      // less than or equal to its square root,
        // we only need to check up to the square root to
      // find all primes.
        for (int i = 3; i * i < n; i += 2) {
            // If 'i' is marked as non-prime (prime[i/2] is true),
          // skip to the next iteration
            if (!prime[i / 2]) {
                // Mark all multiples of 'i' as non-prime by
              // setting their corresponding positions in the array to true
                // We start marking from i*i since all smaller multiples of 'i'
              // would have been marked by previous primes.
                for (int j = i * i; j < n; j += i * 2) {
                    prime[j / 2] = true;
                }
            }
        }
 
        // Print the prime numbers
        System.out.print("2 "); // 2 is the only even prime number
        for (int i = 3; i < n; i += 2) {
            if (!prime[i / 2]) {
                System.out.print(i + " "); // If prime[i/2] is false, 'i' is a prime number, so print it.
            }
        }
    }
 
    public static void main(String[] args) {
        int n = 100;
        normalSieve(n); // Find and print prime numbers up to 'n'
    }
}


Python3




def normal_sieve(n):
    # prime[i] is going to store True if
    # i * 2 + 1 is composite.
    prime = [False] * (n // 2)
 
    # 2 is the only even prime, so we can
    # ignore that. Loop starts from 3.
    for i in range(3, int(n**0.5) + 1, 2):
        # If i is prime, mark all its
        # multiples as composite
        if not prime[i // 2]:
            for j in range(i * i, n, i * 2):
                prime[j // 2] = True
 
    # Print 2 separately
    print(2, end=" ")
 
    # Printing other primes
    for i in range(3, n, 2):
        if not prime[i // 2]:
            print(i, end=" ")
 
# Driver code
if __name__ == "__main__":
    n = 100
    normal_sieve(n)


C#




using System;
 
public class MainClass
{
    public static void NormalSieve(int n)
    {
        // prime[i] is going to store true if
        // if i*2 + 1 is composite.
        bool[] prime = new bool[n / 2];
        Array.Fill(prime, false);
 
        // 2 is the only even prime so we can ignore that.
        // Loop starts from 3.
        for (int i = 3; i * i < n; i += 2)
        {
            // If i is prime, mark all its multiples as composite
            if (!prime[i / 2])
            {
                for (int j = i * i; j < n; j += i * 2)
                {
                    prime[j / 2] = true;
                }
            }
        }
 
        // writing 2 separately
        Console.Write("2 ");
 
        // Printing other primes
        for (int i = 3; i < n; i += 2)
        {
            if (!prime[i / 2])
            {
                Console.Write(i + " ");
            }
        }
    }
 
    public static void Main(string[] args)
    {
        int n = 100;
        NormalSieve(n);
    }
}


Javascript




function normalSieve(n) {
    // prime[i] is going to store true if i*2 + 1 is composite.
    let prime = new Array(n / 2).fill(false);
 
    // 2 is the only even prime so we can ignore that.
    // Loop starts from 3.
    for (let i = 3; i * i < n; i += 2) {
        // If i is prime, mark all its multiples as composite
        if (!prime[Math.floor(i / 2)]) {
            for (let j = i * i; j < n; j += i * 2) {
                prime[Math.floor(j / 2)] = true;
            }
        }
    }
 
    // Writing 2 separately
    process.stdout.write("2 ");
 
    // Printing other primes
    for (let i = 3; i < n; i += 2) {
        if (!prime[Math.floor(i / 2)]) {
            process.stdout.write(i + " ");
        }
    }
}
 
// Main code to test the function
 
let n = 100;
normalSieve(n);


Output

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 









Time Complexity: O(n*log(log n)), where n is the difference between the intervals.
Space Complexity: O(n)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments