Parity: Parity of a number refers to whether it contains an odd or even number of 1-bits. The number has “odd parity” if it contains an odd number of 1-bits and is “even parity” if it contains an even number of 1-bits.
The main idea of the below solution is – Loop while n is not 0 and in loop unset one of the set bits and invert parity.
Algorithm: getParity(n) 1. Initialize parity = 0 2. Loop while n != 0 a. Invert parity parity = !parity b. Unset rightmost set bit n = n & (n-1) 3. return parity Example: Initialize: n = 13 (1101) parity = 0 n = 13 & 12 = 12 (1100) parity = 1 n = 12 & 11 = 8 (1000) parity = 0 n = 8 & 7 = 0 (0000) parity = 1
Program:
C++
// C++ program to find parity // of an integer # include<bits/stdc++.h> # define bool int using namespace std; // Function to get parity of number n. It returns 1 // if n has odd parity, and returns 0 if n has even // parity bool getParity(unsigned int n) { bool parity = 0; while (n) { parity = !parity; n = n & (n - 1); } return parity; } /* Driver program to test getParity() */ int main() { unsigned int n = 7; cout<< "Parity of no " <<n<< " = " <<(getParity(n)? "odd" : "even" ); getchar (); return 0; } |
C
// C program to find parity // of an integer # include <stdio.h> # define bool int /* Function to get parity of number n. It returns 1 if n has odd parity, and returns 0 if n has even parity */ bool getParity(unsigned int n) { bool parity = 0; while (n) { parity = !parity; n = n & (n - 1); } return parity; } /* Driver program to test getParity() */ int main() { unsigned int n = 7; printf ( "Parity of no %d = %s" , n, (getParity(n)? "odd" : "even" )); getchar (); return 0; } |
Java
// Java program to find parity // of an integer import java.util.*; import java.lang.*; import java.io.*; import java.math.BigInteger; class GFG { /* Function to get parity of number n. It returns 1 if n has odd parity, and returns 0 if n has even parity */ static boolean getParity( int n) { boolean parity = false ; while (n != 0 ) { parity = !parity; n = n & (n- 1 ); } return parity; } /* Driver program to test getParity() */ public static void main (String[] args) { int n = 7 ; System.out.println( "Parity of no " + n + " = " + (getParity(n)? "odd" : "even" )); } } /* This code is contributed by Amit khandelwal*/ |
Python3
# Python3 code to get parity. # Function to get parity of number n. # It returns 1 if n has odd parity, # and returns 0 if n has even parity def getParity( n ): parity = 0 while n: parity = ~parity n = n & (n - 1 ) return parity # Driver program to test getParity() n = 7 print ( "Parity of no " , n, " = " , ( "odd" if getParity(n) else "even" )) # This code is contributed by "Sharad_Bhardwaj". |
C#
// C# program to find parity of an integer using System; class GFG { /* Function to get parity of number n. It returns 1 if n has odd parity, and returns 0 if n has even parity */ static bool getParity( int n) { bool parity = false ; while (n != 0) { parity = !parity; n = n & (n-1); } return parity; } // Driver code public static void Main () { int n = 7; Console.Write( "Parity of no " + n + " = " + (getParity(n)? "odd" : "even" )); } } // This code is contributed by nitin mittal. |
PHP
<?php // PHP program to find the parity // of an unsigned integer // Function to get parity of // number n. It returns 1 // if n has odd parity, and // returns 0 if n has even // parity function getParity( $n ) { $parity = 0; while ( $n ) { $parity = ! $parity ; $n = $n & ( $n - 1); } return $parity ; } // Driver Code $n = 7; echo "Parity of no " , $n , " = " , getParity( $n )? "odd" : "even" ; // This code is contributed by anuj_67. ?> |
Javascript
<script> // Javascript program to find parity // of an integer // Function to get parity of number n. // It returns 1 if n has odd parity, and // returns 0 if n has even parity function getParity(n) { var parity = false ; while (n != 0) { parity = !parity; n = n & (n - 1); } return parity; } // Driver code var n = 7; document.write( "Parity of no " + n + " = " + (getParity(n) ? "odd" : "even" )); // This code is contributed by Kirti </script> |
Parity of no 7 = odd
Above solution can be optimized by using lookup table. Please refer to Bit Twiddle Hacks[1st reference] for details.
Time Complexity: The time taken by above algorithm is proportional to the number of bits set. Worst case complexity is O(Log n).
Auxiliary Space: O(1)
Another approach: (Using built-in-function)
C++
// C++ program to find parity // of an integer # include<bits/stdc++.h> # define bool int using namespace std; // Function to get parity of number n. It returns 1 // if n has odd parity, and returns 0 if n has even // parity bool getParity(unsigned int n) { return __builtin_parity(n); } // Driver code int main() { unsigned int n = 7; cout<< "Parity of no " <<n<< " = " <<(getParity(n)? "odd" : "even" ); getchar (); return 0; } // This code is contributed by Kasina Dheeraj |
Java
// Java program to implement approach import java.util.*; class Main { // Function to get parity of number n. It returns 1 // if n has odd parity, and returns 0 if n has even // parity public static boolean getParity( int n) { return Integer.bitCount(n) % 2 == 1 ; } // Driver code public static void main(String[] args) { int n = 7 ; System.out.println( "Parity of no " + n + " = " + (getParity(n) ? "odd" : "even" )); } } // This code is contributed by phasing17 |
Python3
# Python program to find parity # of an integer # Function to get parity of number n. It returns 1 # if n has odd parity, and returns 0 if n has even # parity def getParity(n): return ( bin (n).count( "1" )) % 2 # Driver code n = 7 print ( "Parity of no {0} = " . format (n),end = "") print ( "odd" if getParity(n) else "even" ) # This code is contributed by Pushpesh Raj |
C#
// C# code to implement the approach using System; using System.Linq; class GFG { // Function to get parity of number n. It returns 1 // if n has odd parity, and returns 0 if n has even // parity public static bool GetParity( int n) { return Convert.ToInt32(Convert.ToString(n, 2).Count(x => x == '1' )) % 2 == 1; } // Driver code public static void Main() { int n = 7; Console.WriteLine( "Parity of no " + n + " = " + (GetParity(n) ? "odd" : "even" )); } } // This code is contributed by phasing17 |
Javascript
// JS program to implement the above approach // Function to get parity of number n. It returns 1 // if n has odd parity, and returns 0 if n has even parity const getParity = (n) => { return (n.toString(2).split( "1" ).length - 1) % 2; }; // Driver code const n = 7; console.log(`Parity of no ${n} =`, getParity(n) ? "odd" : "even" ); // This code is implemented by Phasing17 |
Parity of no 7 = odd
Time Complexity: O(1)
Auxiliary Space: O(1)
Another Approach: Mapping numbers with the bit
We can use a map or an array of the number of bits to form a nibble (a nibble consists of 4 bits, so a 16 – length array would be required). Then, we can get the nibbles of a given number.
This approach can be summarized into the following steps:
1. Build the 16 length array of the number of bits to form a nibble – { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4 }
2. Recursively count the set of the bits by taking the last nibble (4 bits) from the array using the formula num & 0xf and then getting each successive nibble by discarding the last 4 bits using >> operator.
3. Check the parity: if the number of set bits is even, ie numOfSetBits % 2 == 0, then the number is of even parity. Else, it is of odd parity.
C++
// C++ program to get the parity of the // binary representation of a number #include <bits/stdc++.h> using namespace std; int nibble_to_bits[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4 }; // Function to recursively get the nibble // of a given number and map them in the array unsigned int countSetBits(unsigned int num) { int nibble = 0; if (0 == num) return nibble_to_bits[0]; // Find last nibble nibble = num & 0xf; // Use pre-stored values to find count // in last nibble plus recursively add // remaining nibbles. return nibble_to_bits[nibble] + countSetBits(num >> 4); } // Function to get the parity of a number bool getParity( int num) { return countSetBits(num) % 2; } // Driver code int main() { unsigned int n = 7; // Function call cout << "Parity of no " << n << " = " << (getParity(n) ? "odd" : "even" ); return 0; } // This code is contributed by phasing17 |
Java
// Java program to get the parity of the // binary representation of a number import java.util.*; class GFG{ static int [] nibble_to_bits = { 0 , 1 , 1 , 2 , 1 , 2 , 2 , 3 , 1 , 2 , 2 , 3 , 2 , 3 , 3 , 4 }; // Function to recursively get the nibble // of a given number and map them in the array static int countSetBits( int num) { int nibble = 0 ; if ( 0 == num) return nibble_to_bits[ 0 ]; // Find last nibble nibble = num & 0xf ; // Use pre-stored values to find count // in last nibble plus recursively add // remaining nibbles. return nibble_to_bits[nibble] + countSetBits(num >> 4 ); } // Function to get the parity of a number static boolean getParity( int num) { return countSetBits(num) % 2 == 1 ; } // Driver code public static void main(String[] args) { int n = 7 ; // Function call System.out.print( "Parity of no " + n + " = " + (getParity(n) ? "odd" : "even" )); } } // This code is contributed by sanjoy_62. |
Python3
# Python3 program to get the parity of the # binary representation of a number nibble_to_bits = [ 0 , 1 , 1 , 2 , 1 , 2 , 2 , 3 , 1 , 2 , 2 , 3 , 2 , 3 , 3 , 4 ] # Function to recursively get the nibble # of a given number and map them in the array def countSetBits(num): nibble = 0 if ( 0 = = num): return nibble_to_bits[ 0 ] # Find last nibble nibble = num & 0xf # Use pre-stored values to find count # in last nibble plus recursively add # remaining nibbles. return nibble_to_bits[nibble] + countSetBits(num >> 4 ) # Function to get the parity of a number def getParity(num): return countSetBits(num) % 2 # Driver code n = 7 # Function call print ( "Parity of no" , n, " = " , [ "even" , "odd" ][getParity(n)]) # This code is contributed by phasing17 |
C#
// C# program to get the parity of the // binary representation of a number using System; class GFG { static int [] nibble_to_bits = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4 }; // Function to recursively get the nibble // of a given number and map them in the array static int countSetBits( int num) { int nibble = 0; if (0 == num) return nibble_to_bits[0]; // Find last nibble nibble = num & 0xf; // Use pre-stored values to find count // in last nibble plus recursively add // remaining nibbles. return nibble_to_bits[nibble] + countSetBits(num >> 4); } // Function to get the parity of a number static bool getParity( int num) { return countSetBits(num) % 2 == 1; } // Driver code public static void Main( string [] args) { int n = 7; // Function call Console.WriteLine( "Parity of no " + n + " = " + (getParity(n) ? "odd" : "even" )); } } // This code is contributed by phasing17 |
Javascript
// JavaScript program to get the parity of the // binary representation of a number let nibble_to_bits = [ 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4 ]; // Function to recursively get the nibble // of a given number and map them in the array function countSetBits(num) { let nibble = 0; if (0 == num) return nibble_to_bits[0]; // Find last nibble nibble = num & 0xf; // Use pre-stored values to find count // in last nibble plus recursively add // remaining nibbles. return nibble_to_bits[nibble] + countSetBits(num >> 4); } // Function to get the parity of a number function getParity(num) { return countSetBits(num) % 2; } // Driver code let n = 7; // Function call console.log( "Parity of no " + n + " = " + (getParity(n) ? "odd" : "even" )); // This code is contributed by phasing17 |
Parity of no 7 = odd
Time Complexity: O(1)
Auxiliary Space: O(1)
Uses: Parity is used in error detection and cryptography.
Compute the parity of a number using XOR and table look-up
References:
http://graphics.stanford.edu/~seander/bithacks.html#ParityNaive – last checked on 30 May 2009.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!