Given an undirected graph g, the task is to print the number of connected components in the graph.
Examples:
Input:
Output: 3
There are three connected components:
1 – 5, 0 – 2 – 4 and 3
Approach:
DFS visit all the connected vertices of the given vertex.
When iterating over all vertices, whenever we see unvisited node, it is because it was not visited by DFS done on vertices so far.
That means it is not connected to any previous nodes visited so far i.e it was not part of previous components.
Hence this node belongs to new component.
This means, before visiting this node, we just finished visiting all nodes previous component and that component is now complete.
So we need to increment component counter as we completed a component.
The idea is to use a variable count to store the number of connected components and do the following steps:
Initialize all vertices as unvisited.
For all the vertices check if a vertex has not been visited, then perform DFS on that vertex and increment the variable count by 1.
Below is the implementation of the above approach:
C++
// C++ program for above approach #include <bits/stdc++.h> using namespace std; // Graph class represents a undirected graph // using adjacency list representation class Graph { // No. of vertices int V; // Pointer to an array containing adjacency lists list< int >* adj; // A function used by DFS void DFSUtil( int v, bool visited[]); public : // Constructor Graph( int V); void addEdge( int v, int w); int NumberOfconnectedComponents(); }; // Function to return the number of // connected components in an undirected graph int Graph::NumberOfconnectedComponents() { // Mark all the vertices as not visited bool * visited = new bool [V]; // To store the number of connected components int count = 0; for ( int v = 0; v < V; v++) visited[v] = false ; for ( int v = 0; v < V; v++) { if (visited[v] == false ) { DFSUtil(v, visited); count += 1; } } return count; } void Graph::DFSUtil( int v, bool visited[]) { // Mark the current node as visited visited[v] = true ; // Recur for all the vertices // adjacent to this vertex list< int >::iterator i; for (i = adj[v].begin(); i != adj[v].end(); ++i) if (!visited[*i]) DFSUtil(*i, visited); } Graph::Graph( int V) { this ->V = V; adj = new list< int >[V]; } // Add an undirected edge void Graph::addEdge( int v, int w) { adj[v].push_back(w); adj[w].push_back(v); } // Driver code int main() { Graph g(5); g.addEdge(1, 0); g.addEdge(2, 3); g.addEdge(3, 4); cout << g.NumberOfconnectedComponents(); return 0; } |
Java
import java.util.*; class Graph { private int V; // No. of vertices in graph. private LinkedList<Integer>[] adj; // Adjacency List // representation ArrayList<ArrayList<Integer> > components = new ArrayList<>(); @SuppressWarnings ( "unchecked" ) Graph( int v) { V = v; adj = new LinkedList[v]; for ( int i = 0 ; i < v; i++) adj[i] = new LinkedList(); } void addEdge( int u, int w) { adj[u].add(w); adj[w].add(u); // Undirected Graph. } void DFSUtil( int v, boolean [] visited, ArrayList<Integer> al) { visited[v] = true ; al.add(v); System.out.print(v + " " ); Iterator<Integer> it = adj[v].iterator(); while (it.hasNext()) { int n = it.next(); if (!visited[n]) DFSUtil(n, visited, al); } } void DFS() { boolean [] visited = new boolean [V]; for ( int i = 0 ; i < V; i++) { ArrayList<Integer> al = new ArrayList<>(); if (!visited[i]) { DFSUtil(i, visited, al); components.add(al); } } } int ConnectedComponents() { return components.size(); } } public class Main { public static void main(String[] args) { Graph g = new Graph( 6 ); g.addEdge( 1 , 5 ); g.addEdge( 0 , 2 ); g.addEdge( 2 , 4 ); System.out.println( "Graph DFS:" ); g.DFS(); System.out.println( "\nNumber of Connected Components: " + g.ConnectedComponents()); } } // Code contributed by Madhav Chittlangia. |
Python3
# Python3 program for above approach # Graph class represents a undirected graph # using adjacency list representation class Graph: def __init__( self , V): # No. of vertices self .V = V # Pointer to an array containing # adjacency lists self .adj = [[] for i in range ( self .V)] # Function to return the number of # connected components in an undirected graph def NumberOfconnectedComponents( self ): # Mark all the vertices as not visited visited = [ False for i in range ( self .V)] # To store the number of connected # components count = 0 for v in range ( self .V): if (visited[v] = = False ): self .DFSUtil(v, visited) count + = 1 return count def DFSUtil( self , v, visited): # Mark the current node as visited visited[v] = True # Recur for all the vertices # adjacent to this vertex for i in self .adj[v]: if ( not visited[i]): self .DFSUtil(i, visited) # Add an undirected edge def addEdge( self , v, w): self .adj[v].append(w) self .adj[w].append(v) # Driver code if __name__ = = '__main__' : g = Graph( 5 ) g.addEdge( 1 , 0 ) g.addEdge( 2 , 3 ) g.addEdge( 3 , 4 ) print (g.NumberOfconnectedComponents()) # This code is contributed by rutvik_56 |
C#
using System; using System.Collections.Generic; class Graph { // No. of vertices int V; // Adjacency List Representation List< int >[] adj; // Constructor public Graph( int v) { V = v; adj = new List< int >[ V ]; for ( int i = 0; i < V; i++) { adj[i] = new List< int >(); } } // Function to add an edge public void addEdge( int v, int w) { adj[v].Add(w); adj[w].Add(v); } // A function used by DFS private void DFSUtil( int v, bool [] visited) { // Mark the current node as visited visited[v] = true ; // Recur for all the vertices adjacent to this // vertex foreach ( int i in adj[v]) { if (!visited[i]) { DFSUtil(i, visited); } } } // Function to return the number of connected components public int NumberOfConnectedComponents() { // Mark all the vertices as not visited bool [] visited = new bool [V]; // To store the number of connected components int count = 0; for ( int v = 0; v < V; v++) { if (!visited[v]) { DFSUtil(v, visited); count++; } } return count; } } class Program { static void Main( string [] args) { Graph g = new Graph(5); g.addEdge(1, 0); g.addEdge(2, 3); g.addEdge(3, 4); Console.WriteLine(g.NumberOfConnectedComponents()); } } // This code is contributed by lokeshpotta20. |
Javascript
<script> // JavaScript program for above approach // Graph class represents a undirected graph // using adjacency list representation class Graph{ constructor(V){ // No. of vertices this .V = V // Pointer to an array containing // adjacency lists this .adj = new Array( this .V); for (let i=0;i<V;i++){ this .adj[i] = new Array() } } // Function to return the number of // connected components in an undirected graph NumberOfconnectedComponents(){ // Mark all the vertices as not visited let visited = new Array( this .V).fill( false ); // To store the number of connected // components let count = 0 for (let v=0;v< this .V;v++){ if (visited[v] == false ){ this .DFSUtil(v, visited) count += 1 } } return count } DFSUtil(v, visited){ // Mark the current node as visited visited[v] = true ; // Recur for all the vertices // adjacent to this vertex for (let i of this .adj[v]){ if (visited[i] == false ){ this .DFSUtil(i, visited) } } } // Add an undirected edge addEdge(v, w){ this .adj[v].push(w) this .adj[w].push(v) } } // Driver code let g = new Graph(5) g.addEdge(1, 0) g.addEdge(2, 3) g.addEdge(3, 4) document.write(g.NumberOfconnectedComponents(), "</br>" ) // This code is contributed by shinjanpatra </script> |
2
Complexity Analysis:
Time complexity: O(V + E), where V is the number of vertices and E is the number of edges in the graph.
Space Complexity: O(V), since an extra visited array of size V is required.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!