Sunday, November 17, 2024
Google search engine
HomeData Modelling & AIProgram for Mean and median of an unsorted array

Program for Mean and median of an unsorted array

Given an unsorted array a[] of size N, the task is to find its mean and median. 

Mean of an array = (sum of all elements) / (number of elements)

The median of a sorted array of size N is defined as the middle element when N is odd and average of middle two elements when N is even. Since the array is not sorted here, we sort the array first, then apply above formula.

Examples: 

Input: a[] = {1, 3, 4, 2, 6, 5, 8, 7}
Output: Mean = 4.5, Median = 4.5
Explanation: Sum of the elements is 1 + 3 + 4 + 2 + 6 + 5 + 8 + 7 = 36, Mean = 36/8 = 4.5
Since number of elements are even, median is average of 4th and 5th largest elements, which means Median = (4 + 5)/2 = 4.5

Input: a[] = {4, 4, 4, 4, 4}
Output: Mean = 4, Median = 4 

Approach:  To solve the problem follow the below steps:

To find median:

  • First, simply sort the array
  • Then, check if the number of elements present in the array is even or odd
  • If odd, then simply return the mid value of the array
  • Else, the median is the average of the two middle values

To find Mean:

  • At first, find the sum of all the numbers present in the array.
  • Then, simply divide the resulted sum by the size of the array

Below is the code implementation: 

C




// C program to find mean and median of
// an array
#include <stdio.h>
#include <stdlib.h>
 
// Function to compare two integers for qsort
int cmpfunc(const void* a, const void* b)
{
    return (*(int*)a - *(int*)b);
}
 
// Function for calculating mean
double findMean(int a[], int n)
{
    int sum = 0;
    for (int i = 0; i < n; i++)
        sum += a[i];
 
    return (double)sum / (double)n;
}
 
// Function for calculating median
double findMedian(int a[], int n)
{
    // First we sort the array
    qsort(a, n, sizeof(int), cmpfunc);
 
    // check for even case
    if (n % 2 != 0)
        return (double)a[n / 2];
 
    return (double)(a[(n - 1) / 2] + a[n / 2]) / 2.0;
}
 
// Driver code
int main()
{
    int a[] = { 1, 3, 4, 2, 7, 5, 8, 6 };
    int N = sizeof(a) / sizeof(a[0]);
 
    // Function call
    printf("Mean = %f\n", findMean(a, N));
    printf("Median = %f\n", findMedian(a, N));
    return 0;
}


C++




// CPP program to find mean and median of
// an array
#include <bits/stdc++.h>
using namespace std;
 
// Function for calculating mean
double findMean(int a[], int n)
{
    int sum = 0;
    for (int i = 0; i < n; i++)
        sum += a[i];
 
    return (double)sum / (double)n;
}
 
// Function for calculating median
double findMedian(int a[], int n)
{
    // First we sort the array
    sort(a, a + n);
 
    // check for even case
    if (n % 2 != 0)
        return (double)a[n / 2];
 
    return (double)(a[(n - 1) / 2] + a[n / 2]) / 2.0;
}
 
// Driver code
int main()
{
    int a[] = { 1, 3, 4, 2, 7, 5, 8, 6 };
    int N = sizeof(a) / sizeof(a[0]);
   
    // Function call
    cout << "Mean = " << findMean(a, N) << endl;
    cout << "Median = " << findMedian(a, N) << endl;
    return 0;
}


Java




// Java program to find mean
// and median of an array
import java.util.*;
 
class GFG
{
    // Function for calculating mean
    public static double findMean(int a[], int n)
    {
        int sum = 0;
        for (int i = 0; i < n; i++)
            sum += a[i];
 
        return (double)sum / (double)n;
    }
 
    // Function for calculating median
    public static double findMedian(int a[], int n)
    {
        // First we sort the array
        Arrays.sort(a);
 
        // check for even case
        if (n % 2 != 0)
            return (double)a[n / 2];
 
        return (double)(a[(n - 1) / 2] + a[n / 2]) / 2.0;
    }
 
    // Driver code
    public static void main(String args[])
    {
        int a[] = { 1, 3, 4, 2, 7, 5, 8, 6 };
        int n = a.length;
       
        // Function call
        System.out.println("Mean = " + findMean(a, n));
        System.out.println("Median = " + findMedian(a, n));
    }
}
 
// This article is contributed by Anshika Goyal.


Python3




# Python3 program to find mean
# and median of an array
 
# Function for calculating mean
 
 
def findMean(a, n):
 
    sum = 0
    for i in range(0, n):
        sum += a[i]
 
    return float(sum/n)
 
# Function for calculating median
 
 
def findMedian(a, n):
 
    # First we sort the array
    sorted(a)
 
    # check for even case
    if n % 2 != 0:
        return float(a[int(n/2)])
 
    return float((a[int((n-1)/2)] +
                  a[int(n/2)])/2.0)
 
 
# Driver code
a = [1, 3, 4, 2, 7, 5, 8, 6]
n = len(a)
 
# Function call
print("Mean =", findMean(a, n))
print("Median =", findMedian(a, n))
 
# This code is contributed by Smitha Dinesh Semwal


C#




// C# program to find mean
// and median of an array
using System;
 
class GFG
{
    // Function for
    // calculating mean
    public static double findMean(int[] a, int n)
    {
        int sum = 0;
        for (int i = 0; i < n; i++)
            sum += a[i];
 
        return (double)sum / (double)n;
    }
 
    // Function for
    // calculating median
    public static double findMedian(int[] a, int n)
    {
        // First we sort
        // the array
        Array.Sort(a);
 
        // check for
        // even case
        if (n % 2 != 0)
            return (double)a[n / 2];
 
        return (double)(a[(n - 1) / 2] + a[n / 2]) / 2.0;
    }
 
    // Driver Code
    public static void Main()
    {
        int[] a = { 1, 3, 4, 2, 7, 5, 8, 6 };
        int n = a.Length;
       
        // Function call
        Console.Write("Mean = " + findMean(a, n) + "\n");
        Console.Write("Median = " + findMedian(a, n)
                      + "\n");
    }
}
 
// This code is contributed by Smitha .


PHP




<?php
// PHP program to find mean
// and median of an array
 
// Function for calculating mean
function findMean(&$a, $n)
{
    $sum = 0;
    for ($i = 0; $i < $n; $i++)
        $sum += $a[$i];
     
    return (double)$sum /
           (double)$n;
}
 
// Function for
// calculating median
function findMedian(&$a, $n)
{
    // First we sort the array
    sort($a);
 
    // check for even case
    if ($n % 2 != 0)
    return (double)$a[$n / 2];
     
    return (double)($a[($n - 1) / 2] +
                    $a[$n / 2]) / 2.0;
}
 
// Driver Code
$a = array(1, 3, 4, 2,
           7, 5, 8, 6);
$n = sizeof($a);
 
// Function call
echo "Mean = " .
      findMean($a, $n)."\n";
echo "Median = " .
      findMedian($a, $n);
 
// This code is contributed
// by ChitraNayal
?>


Javascript




<script>
 
// Javascript program to find mean
// and median of an array
 
// Function for
// calculating mean
function findMean(a,n)
{
    let sum = 0;
    for (let i = 0; i < n; i++)
        sum += a[i];
 
    return sum / n;
}
 
// Function for
// calculating median
function findMedian(a,n)
{
    // First we sort
    // the array
    a.sort();
 
    // check for
    // even case
    if (n % 2 != 0)
        return a[n / 2];
 
    return (a[Math.floor((n-1)/2)] +
            a[n / 2]) / 2;
}
 
// Driver Code
 
let a = [1, 3, 4, 2, 7, 5, 8, 6]
let n = a.length;
 
// Function call
document.write("Mean = " + findMean(a, n) + "<br>");
document.write("Median = " + findMedian(a, n));
 
 
</script>


Output

Mean = 4.5
Median = 4.5

Complexity Analysis:

Time Complexity to find mean: O(N) 
Time Complexity to find median: O(N Log N) as we need to sort the array first. 
Auxiliary Space: O(1)

This article is contributed by Himanshu Ranjan. If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments