Sunday, November 17, 2024
Google search engine
HomeData Modelling & AIPrint n terms of Newman-Conway Sequence

Print n terms of Newman-Conway Sequence

Newman-Conway numbers is the one that generates the following integer sequence. 

1 1 2 2 3 4 4 4 5 6 7 7….. and follows the below recursive formula. 

P(n) = P(P(n - 1)) + P(n - P(n - 1))

Given a number n then print n terms of Newman-Conway Sequence 

Examples:  

Input : 13
Output : 1 1 2 2 3 4 4 4 5 6 7 7 8
Input : 20
Output : 1 1 2 2 3 4 4 4 5 6 7 7 8 8 8 8 9 10 11 12 

C++




// C++ Program to print n terms
// of Newman-Conway Sequence
#include <bits/stdc++.h>
using namespace std;
 
// Function to find
// the n-th element
void sequence(int n)
{
    // Declare array to store sequence
    int f[n + 1];
    f[0] = 0;
    f[1] = 1;
    f[2] = 1;
     
    cout << f[1] << " " << f[2] << " ";
     
    for (int i = 3; i <= n; i++) {
        f[i] = f[f[i - 1]] + f[i - f[i - 1]];       
        cout << f[i] << " ";
    }
}
 
// Driver Program
int main()
{   
    int n = 13;   
    sequence(n);   
    return 0;
}


Java




// Java Program to print n terms
// of Newman-Conway Sequence
 
class GFG
{
    // Function to find
    // the n-th element
    public static void sequence(int n)
    {
        // Declare array to store sequence
        int f[] = new int[n + 1];
         
        f[0] = 0;
        f[1] = 1;
        f[2] = 1;
         
        System.out.print( f[1] + " " + f[2] + " ");
        for (int i = 3; i <= n; i++)
        {
            f[i] = f[f[i - 1]] + f[i - f[i - 1]];    
            System.out.print(f[i] + " ");
        }
    }
     
    //Driver code
    public static void main(String []args)
    {
        int n = 13 ;
        sequence(n);
    }
 
}
 
 
// This program is contributed
// by upendra singh bartwal


Python3




# Python Program to print n terms
# of Newman-Conway Sequence
 
def sequence(n):
 
    # Function to find
    # the n-th element
    # Declare array to store sequence
    f = [0, 1, 1]
 
    print(f[1], end=" "),
    print(f[2], end=" "),
    for i in range(3,n+1):
        f.append( f[f[i - 1]] + f[i - f[i - 1]])
        print(f[i], end=" "),
         
# driver code
n = 13
sequence(n)
 
# This code is contributed
# by upendra singh bartwal


C#




// C# Program to print n terms
// of Newman-Conway Sequence
using System;
class GFG
{
    // Function to find
    // the n-th element
    public static void sequence(int n)
    {
        // Declare array to store sequence
        int []f = new int[n + 1];
         
        f[0] = 0;
        f[1] = 1;
        f[2] = 1;
         
        Console.Write( f[1] + " " + f[2] + " ");
        for (int i = 3; i <= n; i++)
        {
            f[i] = f[f[i - 1]] + f[i - f[i - 1]];
            Console.Write(f[i] + " ");
        }
    }
     
    // Driver code
    public static void Main()
    {
        int n = 13 ;
        sequence(n);
    }
 
}
 
 
// This program is contributed
// by vt_m.


PHP




<?php
// PHP Program to print n terms
// of Newman-Conway Sequence
 
// Function to find
// the n-th element
function sequence($n)
{
     
    // Declare array to
    // store sequence
    $f=array(0);
 
    $f[0] = 0;
    $f[1] = 1;
    $f[2] = 1;
     
    echo $f[1] , " " , $f[2] , " ";
     
    for ($i = 3; $i <= $n; $i++)
    {
        $f[$i] = $f[$f[$i - 1]] +
                 $f[$i - $f[$i - 1]];    
        echo $f[$i], " ";
    }
}
 
// Driver Code
{
    $n = 13;
    sequence($n);
    return 0;
}
 
// This code is contributed by nitin mittal.
?>


Javascript




<script>
 
// JavaScript Program to print n terms
// of Newman-Conway Sequence
 
    // Function to find
    // the n-th element
    function sequence(n)
    {
        // Declare array to store sequence
        let f = [];
           
        f[0] = 0;
        f[1] = 1;
        f[2] = 1;
           
        document.write( f[1] + " " + f[2] + " ");
        for (let i = 3; i <= n; i++)
        {
            f[i] = f[f[i - 1]] + f[i - f[i - 1]];    
            document.write(f[i] + " ");
        }
    }
 
 
  
// Driver code
 
        let n = 13 ;
        sequence(n);
 
</script>


Output : 

1 1 2 2 3 4 4 4 5 6 7 7 8 

Time complexity: O(n)

Auxiliary Space: O(n)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments