Sunday, November 17, 2024
Google search engine
HomeData Modelling & AIPrint Binary Tree levels in sorted order | Set 2 (Using set)

Print Binary Tree levels in sorted order | Set 2 (Using set)

Given a tree, print the level order traversal in sorted order.

Examples : 

Input :     7
          /    \
        6       5
       / \     / \
      4  3    2   1
      
Output : 
7
5 6
1 2 3 4 

Input :     7
          /    \
        16       1
       / \      
      4   13    
      
Output :
7 
1 16
4 13

We have discussed a priority queue based solution in below post.
Print Binary Tree levels in sorted order | Set 1 (Using Priority Queue)

In this post, a set (which is implemented using balanced binary search tree) based solution is discussed.

Approach : 

  1. Start level order traversal of tree. 
  2. Store all the nodes in a set(or any other similar data structures). 
  3. Print elements of set.

Implementation:

C++




// CPP code to print level order
// traversal in sorted order
#include <bits/stdc++.h>
using namespace std;
 
struct Node {
    int data;
    Node* left;
    Node* right;
    Node(int dat = 0)
        : data(dat), left(nullptr),
          right(nullptr)
    {
    }
};
 
// Function to print sorted
// level order traversal
void sorted_level_order(Node* root)
{
    queue<Node*> q;
    set<int> s;
 
    q.push(root);
    q.push(nullptr);
 
    while (q.empty() == false) {
        Node* tmp = q.front();
        q.pop();
 
        if (tmp == nullptr) {
            if (s.empty() == true)
                break;
            for (set<int>::iterator it =
                 s.begin();it != s.end(); ++it)
                cout << *it << " ";
            q.push(nullptr);
            s.clear();
        }
        else {
            s.insert(tmp->data);
 
            if (tmp->left != nullptr)
                q.push(tmp->left);
            if (tmp->right != nullptr)
                q.push(tmp->right);
        }
    }
}
 
// Driver code
int main()
{
    Node* root = new Node(7);
    root->left = new Node(6);
    root->right = new Node(5);
    root->left->left = new Node(4);
    root->left->right = new Node(3);
    root->right->left = new Node(2);
    root->right->right = new Node(1);   
    sorted_level_order(root);   
    return 0;   
}


Java




// Java code to print level order
// traversal in sorted order
import java.util.*;
import java.util.HashSet;
 
class GFG
{
static class Node
{
    int data;
    Node left, right;
};
static Node newNode(int data)
{
    Node node = new Node();
    node.data = data;
    node.left = node.right = null;
    return (node);
}
 
// Function to print sorted
// level order traversal
static void sorted_level_order(Node root)
{
    Queue<Node> q = new LinkedList<>();
    Set<Integer> s = new HashSet<Integer>();
    q.add(root);
    q.add(null);
 
    while (!q.isEmpty())
    {
        Node tmp = q.peek();
            q.remove();
 
        if (tmp == null)
        {
            if (s.isEmpty())
                break;
            Iterator value = s.iterator();
            while (value.hasNext())
            {
                System.out.print(value.next() + " ");
            }
            q.add(null);
            s.clear();
        }
        else
        {
            s.add(tmp.data);
 
            if (tmp.left != null)
                q.add(tmp.left);
            if (tmp.right != null)
                q.add(tmp.right);
        }
    }
}
 
// Driver Code
public static void main(String[] args)
{
    Node root = newNode(7);
    root.left = newNode(6);
    root.right = newNode(5);
    root.left.left = newNode(4);
    root.left.right = newNode(3);
    root.right.left = newNode(2);
    root.right.right = newNode(1);
    sorted_level_order(root);
}
}
 
// This code is contributed by SHUBHAMSINGH10


Python3




# Python3 program to print level order
# traversal in sorted order
 
# Helper function that allocates a new
# node with the given data and None
# left and right pointers.                                    
class newNode:
 
    # Construct to create a new node
    def __init__(self, key):
        self.data = key
        self.left = None
        self.right = None
 
# Function to print sorted
# level order traversal
def sorted_level_order( root):
 
    q = []
    s = set()
 
    q.append(root)
    q.append(None)
 
    while (len(q)):
        tmp = q[0]
        q.pop(0)
 
        if (tmp == None):
            if (not len(s)):
                break
            for i in s:
                print(i, end = " ")
            q.append(None)
            s = set()
         
        else :
            s.add(tmp.data)
 
            if (tmp.left != None):
                q.append(tmp.left)
            if (tmp.right != None):
                q.append(tmp.right)
 
# Driver Code
if __name__ == '__main__':
     
    """
    Let us create Binary Tree shown
    in above example """
    root = newNode(7)
    root.left = newNode(6)
    root.right = newNode(5)
    root.left.left = newNode(4)
    root.left.right = newNode(3)
    root.right.left = newNode(2)
    root.right.right = newNode(1)
    sorted_level_order(root)
 
# This code is contributed by
# Shubham Singh(SHUBHAMSINGH10)


C#




// C# code to print level order
// traversal in sorted order
using System;
using System.Collections.Generic;
 
class GFG
{
public class Node
{
    public int data;
    public Node left, right;
};
 
static Node newNode(int data)
{
    Node node = new Node();
    node.data = data;
    node.left = node.right = null;
    return (node);
}
 
// Function to print sorted
// level order traversal
static void sorted_level_order(Node root)
{
    Queue<Node> q = new Queue<Node>();
    SortedSet<int> s = new SortedSet<int>();
    q.Enqueue(root);
    q.Enqueue(null);
 
    while (q.Count != 0)
    {
        Node tmp = q.Peek();
            q.Dequeue();
 
        if (tmp == null)
        {
            if (s.Count == 0)
                break;
            foreach (int v in s)
            {
                Console.Write(v + " ");
            }
            q.Enqueue(null);
            s.Clear();
        }
        else
        {
            s.Add(tmp.data);
 
            if (tmp.left != null)
                q.Enqueue(tmp.left);
            if (tmp.right != null)
                q.Enqueue(tmp.right);
        }
    }
}
 
// Driver Code
public static void Main(String[] args)
{
    Node root = newNode(7);
    root.left = newNode(6);
    root.right = newNode(5);
    root.left.left = newNode(4);
    root.left.right = newNode(3);
    root.right.left = newNode(2);
    root.right.right = newNode(1);
    sorted_level_order(root);
}
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
// Javascript code to print level order
// traversal in sorted order
var SortedSet = require("collections/sorted-set");
 
class Node
{
    constructor()
    {
        this.data=0;
        this.left=this.right=null;
    }
}
 
function newNode(data)
{
    let node = new Node();
    node.data = data;
    node.left = node.right = null;
    return (node);
}
 
// Function to print sorted
// level order traversal
function sorted_level_order(root)
{
    let q = [];
    let s = new SortedSet();
    q.push(root);
    q.push(null);
   
    while (q.length!=0)
    {
        let tmp = q.shift();
             
       
        if (tmp == null)
        {
            if (s.size==0)
                break;
            for(let i of s.values())
            {
                document.write(i+" ");
            }
            q.push(null);
            s.clear();
        }
        else
        {
            s.add(tmp.data);
   
            if (tmp.left != null)
                q.push(tmp.left);
            if (tmp.right != null)
                q.push(tmp.right);
        }
    }
}
 
// Driver Code
let root = newNode(7);
root.left = newNode(6);
root.right = newNode(5);
root.left.left = newNode(4);
root.left.right = newNode(3);
root.right.left = newNode(2);
root.right.right = newNode(1);
sorted_level_order(root);
 
 
// This code is contributed by rag2127
</script>


Output: 

7 5 6 1 2 3 4 

 

Time Complexity: O(n*log(n)) where n is the number of nodes in the binary tree.
Auxiliary Space: O(n) where n is the number of nodes in the binary tree.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments