Sunday, November 17, 2024
Google search engine
HomeData Modelling & AIPrint Binary Tree in 2-Dimensions

Print Binary Tree in 2-Dimensions

Given a Binary Tree, print it in two dimension.

Examples: 

Input : Pointer to root of below tree
1
/ \
2 3
/ \ / \
4 5 6 7
Output :
7
3
6
1
5
2
4

We strongly recommend you to minimize your browser and try this yourself first.

If we take a closer look at the pattern, we can notice following. 

  1. Rightmost node is printed in first line and leftmost node is printed in last line. 
  2. Space count increases by a fixed amount at every level.

So we do a reverse inorder traversal (right – root – left) and print tree nodes. We increase space by a fixed amount at every level.

Below is the implementation. 

C++




// C++ Program to print binary tree in 2D
#include <bits/stdc++.h>
 
using namespace std;
#define COUNT 10
 
// A binary tree node
class Node {
public:
    int data;
    Node *left, *right;
 
    /* Constructor that allocates a new node with the
    given data and NULL left and right pointers. */
    Node(int data)
    {
        this->data = data;
        this->left = NULL;
        this->right = NULL;
    }
};
 
// Function to print binary tree in 2D
// It does reverse inorder traversal
void print2DUtil(Node* root, int space)
{
    // Base case
    if (root == NULL)
        return;
 
    // Increase distance between levels
    space += COUNT;
 
    // Process right child first
    print2DUtil(root->right, space);
 
    // Print current node after space
    // count
    cout << endl;
    for (int i = COUNT; i < space; i++)
        cout << " ";
    cout << root->data << "\n";
 
    // Process left child
    print2DUtil(root->left, space);
}
 
// Wrapper over print2DUtil()
void print2D(Node* root)
{
    // Pass initial space count as 0
    print2DUtil(root, 0);
}
 
// Driver code
int main()
{
    Node* root = new Node(1);
    root->left = new Node(2);
    root->right = new Node(3);
 
    root->left->left = new Node(4);
    root->left->right = new Node(5);
    root->right->left = new Node(6);
    root->right->right = new Node(7);
 
    root->left->left->left = new Node(8);
    root->left->left->right = new Node(9);
    root->left->right->left = new Node(10);
    root->left->right->right = new Node(11);
    root->right->left->left = new Node(12);
    root->right->left->right = new Node(13);
    root->right->right->left = new Node(14);
    root->right->right->right = new Node(15);
 
    print2D(root);
 
    return 0;
}
 
// This code is contributed by rathbhupendra


C




// Program to print binary tree in 2D
#include <malloc.h>
#include <stdio.h>
#define COUNT 10
 
// A binary tree node
struct Node {
    int data;
    struct Node *left, *right;
};
 
// Helper function to allocates a new node
struct Node* newNode(int data)
{
    struct Node* node
        = (struct Node*)malloc(sizeof(struct Node));
    node->data = data;
    node->left = node->right = NULL;
    return node;
}
 
// Function to print binary tree in 2D
// It does reverse inorder traversal
void print2DUtil(struct Node* root, int space)
{
    // Base case
    if (root == NULL)
        return;
 
    // Increase distance between levels
    space += COUNT;
 
    // Process right child first
    print2DUtil(root->right, space);
 
    // Print current node after space
    // count
    printf("\n");
    for (int i = COUNT; i < space; i++)
        printf(" ");
    printf("%d\n", root->data);
 
    // Process left child
    print2DUtil(root->left, space);
}
 
// Wrapper over print2DUtil()
void print2D(struct Node* root)
{
    // Pass initial space count as 0
    print2DUtil(root, 0);
}
 
// Driver program to test above functions
int main()
{
    struct Node* root = newNode(1);
    root->left = newNode(2);
    root->right = newNode(3);
 
    root->left->left = newNode(4);
    root->left->right = newNode(5);
    root->right->left = newNode(6);
    root->right->right = newNode(7);
 
    root->left->left->left = newNode(8);
    root->left->left->right = newNode(9);
    root->left->right->left = newNode(10);
    root->left->right->right = newNode(11);
    root->right->left->left = newNode(12);
    root->right->left->right = newNode(13);
    root->right->right->left = newNode(14);
    root->right->right->right = newNode(15);
 
    print2D(root);
 
    return 0;
}


Java




// Java Program to print binary tree in 2D
class GFG {
 
    static final int COUNT = 10;
 
    // A binary tree node
    static class Node {
        int data;
        Node left, right;
 
        /* Constructor that allocates a new node with the
        given data and null left and right pointers. */
        Node(int data)
        {
            this.data = data;
            this.left = null;
            this.right = null;
        }
    };
 
    // Function to print binary tree in 2D
    // It does reverse inorder traversal
    static void print2DUtil(Node root, int space)
    {
        // Base case
        if (root == null)
            return;
 
        // Increase distance between levels
        space += COUNT;
 
        // Process right child first
        print2DUtil(root.right, space);
 
        // Print current node after space
        // count
        System.out.print("\n");
        for (int i = COUNT; i < space; i++)
            System.out.print(" ");
        System.out.print(root.data + "\n");
 
        // Process left child
        print2DUtil(root.left, space);
    }
 
    // Wrapper over print2DUtil()
    static void print2D(Node root)
    {
        // Pass initial space count as 0
        print2DUtil(root, 0);
    }
 
    // Driver code
    public static void main(String args[])
    {
        Node root = new Node(1);
        root.left = new Node(2);
        root.right = new Node(3);
 
        root.left.left = new Node(4);
        root.left.right = new Node(5);
        root.right.left = new Node(6);
        root.right.right = new Node(7);
 
        root.left.left.left = new Node(8);
        root.left.left.right = new Node(9);
        root.left.right.left = new Node(10);
        root.left.right.right = new Node(11);
        root.right.left.left = new Node(12);
        root.right.left.right = new Node(13);
        root.right.right.left = new Node(14);
        root.right.right.right = new Node(15);
 
        print2D(root);
    }
}
 
// This code is contributed by Arnab Kundu


Python3




# Python3 Program to print binary tree in 2D
COUNT = [10]
 
# Binary Tree Node
""" utility that allocates a newNode
with the given key """
 
 
class newNode:
 
    # Construct to create a newNode
    def __init__(self, key):
        self.data = key
        self.left = None
        self.right = None
 
# Function to print binary tree in 2D
# It does reverse inorder traversal
 
 
def print2DUtil(root, space):
 
    # Base case
    if (root == None):
        return
 
    # Increase distance between levels
    space += COUNT[0]
 
    # Process right child first
    print2DUtil(root.right, space)
 
    # Print current node after space
    # count
    print()
    for i in range(COUNT[0], space):
        print(end=" ")
    print(root.data)
 
    # Process left child
    print2DUtil(root.left, space)
 
# Wrapper over print2DUtil()
 
 
def print2D(root):
 
    # space=[0]
    # Pass initial space count as 0
    print2DUtil(root, 0)
 
 
# Driver Code
if __name__ == '__main__':
 
    root = newNode(1)
    root.left = newNode(2)
    root.right = newNode(3)
 
    root.left.left = newNode(4)
    root.left.right = newNode(5)
    root.right.left = newNode(6)
    root.right.right = newNode(7)
 
    root.left.left.left = newNode(8)
    root.left.left.right = newNode(9)
    root.left.right.left = newNode(10)
    root.left.right.right = newNode(11)
    root.right.left.left = newNode(12)
    root.right.left.right = newNode(13)
    root.right.right.left = newNode(14)
    root.right.right.right = newNode(15)
 
    print2D(root)
 
# This code is contributed by
# Shubham Singh(SHUBHAMSINGH10)


C#




// C# Program to print binary tree in 2D
using System;
 
class GFG {
 
    static readonly int COUNT = 10;
 
    // A binary tree node
    public class Node {
        public int data;
        public Node left, right;
 
        /* Constructor that allocates a new node with the
        given data and null left and right pointers. */
        public Node(int data)
        {
            this.data = data;
            this.left = null;
            this.right = null;
        }
    };
 
    // Function to print binary tree in 2D
    // It does reverse inorder traversal
    static void print2DUtil(Node root, int space)
    {
        // Base case
        if (root == null)
            return;
 
        // Increase distance between levels
        space += COUNT;
 
        // Process right child first
        print2DUtil(root.right, space);
 
        // Print current node after space
        // count
        Console.Write("\n");
        for (int i = COUNT; i < space; i++)
            Console.Write(" ");
        Console.Write(root.data + "\n");
 
        // Process left child
        print2DUtil(root.left, space);
    }
 
    // Wrapper over print2DUtil()
    static void print2D(Node root)
    {
        // Pass initial space count as 0
        print2DUtil(root, 0);
    }
 
    // Driver code
    public static void Main(String[] args)
    {
        Node root = new Node(1);
        root.left = new Node(2);
        root.right = new Node(3);
 
        root.left.left = new Node(4);
        root.left.right = new Node(5);
        root.right.left = new Node(6);
        root.right.right = new Node(7);
 
        root.left.left.left = new Node(8);
        root.left.left.right = new Node(9);
        root.left.right.left = new Node(10);
        root.left.right.right = new Node(11);
        root.right.left.left = new Node(12);
        root.right.left.right = new Node(13);
        root.right.right.left = new Node(14);
        root.right.right.right = new Node(15);
 
        print2D(root);
    }
}
 
// This code is contributed by Princi Singh


Javascript




<script>
 
// JavaScript Program to print binary tree in 2D
 
let COUNT = 10;
 
// A binary tree node
class Node
{
    constructor(data)
    {
        this.data = data;
        this.left = null;
        this.right = null;
    }
}
 
// Function to print binary tree in 2D
// It does reverse inorder traversal
function print2DUtil(root,space)
{
    // Base case
    if (root == null)
        return;
   
    // Increase distance between levels
    space += COUNT;
   
    // Process right child first
    print2DUtil(root.right, space);
   
    // Print current node after space
    // count
    document.write("<br>");
    for (let i = COUNT; i < space; i++)
        document.write(" &nbsp");
    document.write(root.data + "\n");
   
    // Process left child
    print2DUtil(root.left, space);
}
 
// Wrapper over print2DUtil()
function print2D(root)
{
    // Pass initial space count as 0
    print2DUtil(root, 0);
}
 
// Driver code
let root = new Node(1);
root.left = new Node(2);
root.right = new Node(3);
 
root.left.left = new Node(4);
root.left.right = new Node(5);
root.right.left = new Node(6);
root.right.right = new Node(7);
 
root.left.left.left = new Node(8);
root.left.left.right = new Node(9);
root.left.right.left = new Node(10);
root.left.right.right = new Node(11);
root.right.left.left = new Node(12);
root.right.left.right = new Node(13);
root.right.right.left = new Node(14);
root.right.right.right = new Node(15);
 
print2D(root);
 
 
 
// This code is contributed by patel2127
 
</script>


Output

                              15

                    7

                              14

          3

                              13

                    6

                              12

1

                              11

                    5

                              10

          2

                              9

                    4

                              8

Time Complexity : O(n) as use inorder traversal.

Space Complexity: O(log n)

Using preorder Traversal

C++




//C++ code for the above approach
#include <bits/stdc++.h>
using namespace std;
 
class Treenode {
public:
    int data;
    Treenode *left, *right;
    Treenode(int data) {
        this->data = data;
        left = right = NULL;
    }
};
 
class Tree {
public:
    Treenode *root;
    Tree() {
        root = NULL;
    }
};
 
int height(Treenode *root) {
    if (root == NULL)
        return 0;
    return max(height(root->left), height(root->right)) + 1;
}
 
int getcol(int h) {
    if (h == 1)
        return 1;
    return getcol(h - 1) + getcol(h - 1) + 1;
}
 
void printTree(int **M, Treenode *root, int col, int row, int height) {
    if (root == NULL)
        return;
    M[row][col] = root->data;
    printTree(M, root->left, col - pow(2, height - 2), row + 1, height - 1);
    printTree(M, root->right, col + pow(2, height - 2), row + 1, height - 1);
}
 
void TreePrinter(Tree tree) {
    int h = height(tree.root);
    int col = getcol(h);
    int **M = new int*[h];
    for (int i = 0; i < h; i++) {
        M[i] = new int[col];
    }
    printTree(M, tree.root, col / 2, 0, h);
    for (int i = 0; i < h; i++) {
        for (int j = 0; j < col; j++) {
            if (M[i][j] == 0)
                cout << " " << " ";
            else
                cout << M[i][j] << " ";
        }
        cout << endl;
    }
}
 
int main() {
    Tree myTree;
    myTree.root = new Treenode(1);
    myTree.root->left = new Treenode(2);
    myTree.root->right = new Treenode(3);
    myTree.root->left->left = new Treenode(4);
    myTree.root->left->right = new Treenode(5);
    myTree.root->right->left = new Treenode(6);
    myTree.root->right->right = new Treenode(7);
    TreePrinter(myTree);
    return 0;
}


Java




import java.util.*;
 
class Treenode {
    int data;
    Treenode left, right;
 
    Treenode(int data) {
        this.data = data;
        left = right = null;
    }
}
 
class Tree {
    Treenode root;
 
    Tree() {
        root = null;
    }
}
 
public class Main {
 
    public static int height(Treenode root) {
        if (root == null)
            return 0;
        return Math.max(height(root.left), height(root.right)) + 1;
    }
 
    public static int getcol(int h) {
        if (h == 1)
            return 1;
        return getcol(h - 1) + getcol(h - 1) + 1;
    }
 
    public static void printTree(int[][] M, Treenode root, int col, int row, int height) {
        if (root == null)
            return;
        M[row][col] = root.data;
        printTree(M, root.left, col - (int)Math.pow(2, height - 2), row + 1, height - 1);
        printTree(M, root.right, col + (int)Math.pow(2, height - 2), row + 1, height - 1);
    }
 
    public static void TreePrinter(Tree tree) {
        int h = height(tree.root);
        int col = getcol(h);
        int[][] M = new int[h][col];
        printTree(M, tree.root, col / 2, 0, h);
        for (int i = 0; i < h; i++) {
            for (int j = 0; j < col; j++) {
                if (M[i][j] == 0)
                    System.out.print("  ");
                else
                    System.out.print(M[i][j] + " ");
            }
            System.out.println();
        }
    }
 
    public static void main(String[] args) {
        Tree myTree = new Tree();
        myTree.root = new Treenode(1);
        myTree.root.left = new Treenode(2);
        myTree.root.right = new Treenode(3);
        myTree.root.left.left = new Treenode(4);
        myTree.root.left.right = new Treenode(5);
        myTree.root.right.left = new Treenode(6);
        myTree.root.right.right = new Treenode(7);
        TreePrinter(myTree);
    }
}


Python3




class Treenode:
    def __init__(self, data):
        self.data = data
        self.left = None
        self.right = None
 
 
class Tree:
    def __init__(self):
        self.root = None
 
 
def height(root):
    if root is None:
        return 0
    return max(height(root.left), height(root.right))+1
 
 
def getcol(h):
    if h == 1:
        return 1
    return getcol(h-1) + getcol(h-1) + 1
 
 
def printTree(M, root, col, row, height):
    if root is None:
        return
    M[row][col] = root.data
    printTree(M, root.left, col-pow(2, height-2), row+1, height-1)
    printTree(M, root.right, col+pow(2, height-2), row+1, height-1)
 
 
def TreePrinter():
    h = height(myTree.root)
    col = getcol(h)
    M = [[0 for _ in range(col)] for __ in range(h)]
    printTree(M, myTree.root, col//2, 0, h)
    for i in M:
        for j in i:
            if j == 0:
                print(" ", end=" ")
            else:
                print(j, end=" ")
        print("")
 
 
myTree = Tree()
myTree.root = Treenode(1)
myTree.root.left = Treenode(2)
myTree.root.right = Treenode(3)
myTree.root.left.left = Treenode(4)
myTree.root.left.right = Treenode(5)
myTree.root.right.left = Treenode(6)
myTree.root.right.right = Treenode(7)
TreePrinter()
 
##This Code is By Sudhanshu Nand Kumar


C#




using System;
 
class TreeNode {
    public int data;
    public TreeNode left;
    public TreeNode right;
 
    public TreeNode(int data) {
        this.data = data;
        this.left = null;
        this.right = null;
    }
}
 
class Tree {
    public TreeNode root;
 
    public Tree() {
        this.root = null;
    }
}
 
class Program {
    static int Height(TreeNode root) {
        if (root == null) {
            return 0;
        }
        return Math.Max(Height(root.left), Height(root.right)) + 1;
    }
 
    static int GetCol(int h) {
        if (h == 1) {
            return 1;
        }
        return GetCol(h - 1) + GetCol(h - 1) + 1;
    }
 
    static void PrintTree(int[][] M, TreeNode root, int col, int row, int height) {
        if (root == null) {
            return;
        }
        M[row][col] = root.data;
        PrintTree(M, root.left, col - (int)Math.Pow(2, height - 2), row + 1, height - 1);
        PrintTree(M, root.right, col + (int)Math.Pow(2, height - 2), row + 1, height - 1);
    }
 
    static void TreePrinter() {
        Tree myTree = new Tree();
        myTree.root = new TreeNode(1);
        myTree.root.left = new TreeNode(2);
        myTree.root.right = new TreeNode(3);
        myTree.root.left.left = new TreeNode(4);
        myTree.root.left.right = new TreeNode(5);
        myTree.root.right.left = new TreeNode(6);
        myTree.root.right.right = new TreeNode(7);
 
        int h = Height(myTree.root);
        int col = GetCol(h);
        int[][] M = new int[h][];
        for (int i = 0; i < h; i++) {
            M[i] = new int[col];
            Array.Fill(M[i], 0);
        }
        PrintTree(M, myTree.root, col / 2, 0, h);
 
        for (int i = 0; i < M.Length; i++) {
            string row = "";
            for (int j = 0; j < M[i].Length; j++) {
                if (M[i][j] == 0) {
                    row += " ";
                } else {
                    row += M[i][j] + " ";
                }
            }
            Console.WriteLine(row);
        }
    }
 
    static void Main(string[] args) {
        TreePrinter();
    }
}


Javascript




class TreeNode {
    constructor(data) {
        this.data = data;
        this.left = null;
        this.right = null;
    }
}
 
class Tree {
    constructor() {
        this.root = null;
    }
}
 
function height(root) {
    if (root === null) {
        return 0;
    }
    return Math.max(height(root.left), height(root.right)) + 1;
}
 
function getCol(h) {
    if (h === 1) {
        return 1;
    }
    return getCol(h - 1) + getCol(h - 1) + 1;
}
 
function printTree(M, root, col, row, height) {
    if (root === null) {
        return;
    }
    M[row][col] = root.data;
    printTree(M, root.left, col - Math.pow(2, height - 2), row + 1, height - 1);
    printTree(M, root.right, col + Math.pow(2, height - 2), row + 1, height - 1);
}
 
function treePrinter() {
    const myTree = new Tree();
    myTree.root = new TreeNode(1);
    myTree.root.left = new TreeNode(2);
    myTree.root.right = new TreeNode(3);
    myTree.root.left.left = new TreeNode(4);
    myTree.root.left.right = new TreeNode(5);
    myTree.root.right.left = new TreeNode(6);
    myTree.root.right.right = new TreeNode(7);
 
    const h = height(myTree.root);
    const col = getCol(h);
    const M = new Array(h).fill().map(() => new Array(col).fill(0));
    printTree(M, myTree.root, Math.floor(col / 2), 0, h);
 
    for (let i = 0; i < M.length; i++) { let row="";
        for (let j = 0; j < M[i].length; j++) {
            if (M[i][j] === 0) {
                row = row +" ";
            } else {
                row= row +M[i][j] + " ";
            }
        }
        console.log(row);
    }
}
 
treePrinter();


Output

      1       
  2       3   
4   5   6   7 

Another solution using level order traversal:

C++




#include <cmath>
#include <iostream>
#include <queue>
 
using namespace std;
 
class Node {
public:
    int data;
    Node* left;
    Node* right;
 
    Node(int data)
    {
        this->data = data;
        left = right = nullptr;
    }
};
 
void printSpace(double n, Node* removed)
{
    for (; n > 0; n--) {
        cout << "\t";
    }
    if (removed == nullptr) {
        cout << " ";
    }
    else {
        cout << removed->data;
    }
}
 
int heightOfTree(Node* root)
{
    if (root == nullptr) {
        return 0;
    }
    return 1
           + max(heightOfTree(root->left),
                 heightOfTree(root->right));
}
 
void printBinaryTree(Node* root)
{
    queue<Node*> treeLevel, temp;
    treeLevel.push(root);
    int counter = 0;
    int height = heightOfTree(root) - 1;
    double numberOfElements = pow(2, (height + 1)) - 1;
    while (counter <= height) {
        Node* removed = treeLevel.front();
        treeLevel.pop();
        if (temp.empty()) {
            printSpace(numberOfElements
                           / pow(2, counter + 1),
                       removed);
        }
        else {
            printSpace(numberOfElements / pow(2, counter),
                       removed);
        }
        if (removed == nullptr) {
            temp.push(nullptr);
            temp.push(nullptr);
        }
        else {
            temp.push(removed->left);
            temp.push(removed->right);
        }
        if (treeLevel.empty()) {
            cout << endl << endl;
            treeLevel = temp;
            while (!temp.empty()) {
                temp.pop();
            }
            counter++;
        }
    }
}
 
int main()
{
    Node* root = new Node(1);
    Node* temp = nullptr;
    temp = new Node(2);
    root->left = temp;
    temp = new Node(3);
    root->right = temp;
 
    temp = new Node(4);
    root->left->left = temp;
    temp = new Node(5);
    root->left->right = temp;
    temp = new Node(6);
    root->right->left = temp;
    temp = new Node(7);
    root->right->right = temp;
 
    temp = new Node(8);
    root->left->left->left = temp;
    temp = new Node(9);
    root->left->left->right = temp;
    temp = new Node(10);
    root->left->right->left = temp;
    temp = new Node(11);
    root->left->right->right = temp;
    temp = new Node(12);
    root->right->left->left = temp;
    temp = new Node(13);
    root->right->left->right = temp;
    temp = new Node(14);
    root->right->right->left = temp;
    temp = new Node(15);
    root->right->right->right = temp;
 
    printBinaryTree(root);
 
    return 0;
}


Java




import java.util.LinkedList;
 
public class Tree1 {
 
    public static void main(String[] args)
    {
 
        Tree1.Node root = new Tree1.Node(1);
        Tree1.Node temp = null;
        temp = new Tree1.Node(2);
        root.left = temp;
        temp = new Tree1.Node(3);
        root.right = temp;
 
        temp = new Tree1.Node(4);
        root.left.left = temp;
        temp = new Tree1.Node(5);
        root.left.right = temp;
        temp = new Tree1.Node(6);
        root.right.left = temp;
        temp = new Tree1.Node(7);
        root.right.right = temp;
 
        temp = new Tree1.Node(8);
        root.left.left.left = temp;
        temp = new Tree1.Node(9);
        root.left.left.right = temp;
        temp = new Tree1.Node(10);
        root.left.right.left = temp;
        temp = new Tree1.Node(11);
        root.left.right.right = temp;
        temp = new Tree1.Node(12);
        root.right.left.left = temp;
        temp = new Tree1.Node(13);
        root.right.left.right = temp;
        temp = new Tree1.Node(14);
        root.right.right.left = temp;
        temp = new Tree1.Node(15);
        root.right.right.right = temp;
 
        printBinaryTree(root);
    }
 
    public static class Node {
 
        public Node(int data) { this.data = data; }
        int data;
        Node left;
        Node right;
    }
 
    public static void printBinaryTree(Node root)
    {
        LinkedList<Node> treeLevel = new LinkedList<Node>();
        treeLevel.add(root);
        LinkedList<Node> temp = new LinkedList<Node>();
        int counter = 0;
        int height = heightOfTree(root) - 1;
        // System.out.println(height);
        double numberOfElements
            = (Math.pow(2, (height + 1)) - 1);
        // System.out.println(numberOfElements);
        while (counter <= height) {
            Node removed = treeLevel.removeFirst();
            if (temp.isEmpty()) {
                printSpace(numberOfElements
                               / Math.pow(2, counter + 1),
                           removed);
            }
            else {
                printSpace(numberOfElements
                               / Math.pow(2, counter),
                           removed);
            }
            if (removed == null) {
                temp.add(null);
                temp.add(null);
            }
            else {
                temp.add(removed.left);
                temp.add(removed.right);
            }
 
            if (treeLevel.isEmpty()) {
                System.out.println("");
                System.out.println("");
                treeLevel = temp;
                temp = new LinkedList<>();
                counter++;
            }
        }
    }
 
    public static void printSpace(double n, Node removed)
    {
        for (; n > 0; n--) {
            System.out.print("\t");
        }
        if (removed == null) {
            System.out.print(" ");
        }
        else {
            System.out.print(removed.data);
        }
    }
 
    public static int heightOfTree(Node root)
    {
        if (root == null) {
            return 0;
        }
        return 1
            + Math.max(heightOfTree(root.left),
                       heightOfTree(root.right));
    }
}


Python3




class Node:
    def __init__(self, data):
        self.data = data
        self.left = None
        self.right = None
 
# This function prints space characters to
# format the output of the binary tree.
# It takes in a number of spaces to print (n),
# and a Node pointer to print instead of
# a space if one is provided (removed).
def print_space(n, removed):
    for i in range(n):
        print("\t", end="")
    if removed is None:
        print(" ", end="")
    else:
        print(removed.data, end="")
 
 
def height_of_tree(root):
    if root is None:
        return 0
    return 1 + max(height_of_tree(root.left), height_of_tree(root.right))
 
 
def print_binary_tree(root):
    tree_level = []
    temp = []
    tree_level.append(root)
    counter = 0
    height = height_of_tree(root) - 1
    number_of_elements = 2 ** (height + 1) - 1
    while counter <= height:
        removed = tree_level.pop(0)
        if len(temp) == 0:
            print_space(int(number_of_elements /
                            (2 ** (counter + 1))), removed)
        else:
            print_space(int(number_of_elements / (2 ** counter)), removed)
        if removed is None:
            temp.append(None)
            temp.append(None)
        else:
            temp.append(removed.left)
            temp.append(removed.right)
        if len(tree_level) == 0:
            print("\n")
            tree_level = temp
            temp = []
            counter += 1
 
 
root = Node(1)
temp = Node(2)
root.left = temp
temp = Node(3)
root.right = temp
 
temp = Node(4)
root.left.left = temp
temp = Node(5)
root.left.right = temp
temp = Node(6)
root.right.left = temp
temp = Node(7)
root.right.right = temp
 
temp = Node(8)
root.left.left.left = temp
temp = Node(9)
root.left.left.right = temp
temp = Node(10)
root.left.right.left = temp
temp = Node(11)
root.left.right.right = temp
temp = Node(12)
root.right.left.left = temp
temp = Node(13)
root.right.left.right = temp
temp = Node(14)
root.right.right.left = temp
temp = Node(15)
root.right.right.right = temp
 
print_binary_tree(root)


C#




using System;
using System.Collections.Generic;
 
class Node
{
    public int data;
    public Node left;
    public Node right;
 
    public Node(int data)
    {
        this.data = data;
        left = right = null;
    }
}
 
class BinaryTreePrinter
{
    // Function to print spaces or node data based on position
    static void PrintSpace(double n, Node removed)
    {
        for (; n > 0; n--)
        {
            Console.Write("\t");
        }
        if (removed == null)
        {
            Console.Write(" ");
        }
        else
        {
            Console.Write(removed.data);
        }
    }
 
    // Function to calculate the height of the tree
    static int HeightOfTree(Node root)
    {
        if (root == null)
        {
            return 0;
        }
        return 1 + Math.Max(HeightOfTree(root.left), HeightOfTree(root.right));
    }
 
    // Function to print a binary tree
    static void PrintBinaryTree(Node root)
    {
        Queue<Node> treeLevel = new Queue<Node>();
        Queue<Node> temp = new Queue<Node>();
        treeLevel.Enqueue(root);
        int counter = 0;
        int height = HeightOfTree(root) - 1;
        double numberOfElements = Math.Pow(2, (height + 1)) - 1;
 
        while (counter <= height)
        {
            Node removed = treeLevel.Dequeue();
            if (temp.Count == 0)
            {
                PrintSpace(numberOfElements / Math.Pow(2, counter + 1), removed);
            }
            else
            {
                PrintSpace(numberOfElements / Math.Pow(2, counter), removed);
            }
 
            if (removed == null)
            {
                temp.Enqueue(null);
                temp.Enqueue(null);
            }
            else
            {
                temp.Enqueue(removed.left);
                temp.Enqueue(removed.right);
            }
 
            if (treeLevel.Count == 0)
            {
                Console.WriteLine("\n\n");
                treeLevel = new Queue<Node>(temp);
                temp.Clear();
                counter++;
            }
        }
    }
 
    static void Main(string[] args)
    {
        Node root = new Node(1);
        Node temp = null;
        temp = new Node(2);
        root.left = temp;
        temp = new Node(3);
        root.right = temp;
 
        temp = new Node(4);
        root.left.left = temp;
        temp = new Node(5);
        root.left.right = temp;
        temp = new Node(6);
        root.right.left = temp;
        temp = new Node(7);
        root.right.right = temp;
 
        temp = new Node(8);
        root.left.left.left = temp;
        temp = new Node(9);
        root.left.left.right = temp;
        temp = new Node(10);
        root.left.right.left = temp;
        temp = new Node(11);
        root.left.right.right = temp;
        temp = new Node(12);
        root.right.left.left = temp;
        temp = new Node(13);
        root.right.left.right = temp;
        temp = new Node(14);
        root.right.right.left = temp;
        temp = new Node(15);
        root.right.right.right = temp;
 
        PrintBinaryTree(root);
    }
}


Javascript




class Node {
    constructor(data) {
        this.data = data;
        this.left = null;
        this.right = null;
    }
}
 
// This function prints space characters to format the output of the binary tree.
// It takes in a number of spaces to print (n), and a Node pointer to print instead of a space if one is provided (removed).
function printSpace(n, removed) {
    for (let i = 0; i < n; i++) {
        process.stdout.write("\t");
    }
    if (removed == null) {
        process.stdout.write(" ");
    } else {
        process.stdout.write(removed.data.toString());
    }
}
 
function heightOfTree(root) {
    if (root == null) {
        return 0;
    }
    return 1 + Math.max(heightOfTree(root.left), heightOfTree(root.right));
}
 
function printBinaryTree(root) {
    let treeLevel = [], temp = [];
    treeLevel.push(root);
    let counter = 0;
    let height = heightOfTree(root) - 1;
    let numberOfElements = Math.pow(2, (height + 1)) - 1;
    while (counter <= height) {
        let removed = treeLevel.shift();
        if (temp.length == 0) {
            printSpace(numberOfElements / Math.pow(2, counter + 1), removed);
        } else {
            printSpace(numberOfElements / Math.pow(2, counter), removed);
        }
        if (removed == null) {
            temp.push(null);
            temp.push(null);
        } else {
            temp.push(removed.left);
            temp.push(removed.right);
        }
        if (treeLevel.length == 0) {
            console.log("\n");
            treeLevel = temp;
            temp = [];
            counter++;
        }
    }
}
 
let root = new Node(1);
let temp = null;
temp = new Node(2);
root.left = temp;
temp = new Node(3);
root.right = temp;
 
temp = new Node(4);
root.left.left = temp;
temp = new Node(5);
root.left.right = temp;
temp = new Node(6);
root.right.left = temp;
temp = new Node(7);
root.right.right = temp;
 
temp = new Node(8);
root.left.left.left = temp;
temp = new Node(9);
root.left.left.right = temp;
temp = new Node(10);
root.left.right.left = temp;
temp = new Node(11);
root.left.right.right = temp;
temp = new Node(12);
root.right.left.left = temp;
temp = new Node(13);
root.right.left.right = temp;
temp = new Node(14);
root.right.right.left = temp;
temp = new Node(15);
root.right.right.right = temp;
 
printBinaryTree(root);


Output

                                1

                2                                3

        4                5                6                7

    8        9        10        11        12        13        14        15

This article is contributed by Aditya Goel. If you like neveropen and would like to contribute, you can also write an article and mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments