Given a binary search tree, and an integer X, the task is to check if there exists a pair of distinct nodes in BST with sum equal to X. If yes then print Yes else print No.
Examples:
Input: X = 5 5 / \ 3 7 / \ / \ 2 4 6 8 Output: Yes 2 + 3 = 5. Thus, the answer is "Yes" Input: X = 10 1 \ 2 \ 3 \ 4 \ 5 Output: No
Approach: We have already discussed a hash based approach in this article. The space complexity of this is O(N) where N is the number of nodes in BST.
In this article, we will solve the same problem using a space efficient method by reducing the space complexity to O(H) where H is the height of BST. For that, we will use two pointer technique on BST. Thus, we will maintain a forward and a backward iterator that will iterate the BST in the order of in-order and reverse in-order traversal respectively. Following are the steps to solve the problem:
- Create a forward and backward iterator for BST. Let’s say the value of nodes they are pointing at are v1 and v2.
- Now at each step,
- If v1 + v2 = X, we found a pair.
- If v1 + v2 < x, we will make forward iterator point to the next element.
- If v1 + v2 > x, we will make backward iterator point to the previous element.
- If we find no such pair, answer will be “No”.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Node of the binary tree struct node { int data; node* left; node* right; node( int data) { this ->data = data; left = NULL; right = NULL; } }; // Function to find a pair with given sum bool existsPair(node* root, int x) { // Iterators for BST stack<node *> it1, it2; // Initializing forward iterator node* c = root; while (c != NULL) it1.push(c), c = c->left; // Initializing backward iterator c = root; while (c != NULL) it2.push(c), c = c->right; // Two pointer technique while (it1.top() != it2.top()) { // Variables to store values at // it1 and it2 int v1 = it1.top()->data, v2 = it2.top()->data; // Base case if (v1 + v2 == x) return true ; // Moving forward pointer if (v1 + v2 < x) { c = it1.top()->right; it1.pop(); while (c != NULL) it1.push(c), c = c->left; } // Moving backward pointer else { c = it2.top()->left; it2.pop(); while (c != NULL) it2.push(c), c = c->right; } } // Case when no pair is found return false ; } // Driver code int main() { node* root = new node(5); root->left = new node(3); root->right = new node(7); root->left->left = new node(2); root->left->right = new node(4); root->right->left = new node(6); root->right->right = new node(8); int x = 5; // Calling required function if (existsPair(root, x)) cout << "Yes" ; else cout << "No" ; return 0; } |
Java
// Java implementation of the approach import java.util.*; class GFG { // Node of the binary tree static class node { int data; node left; node right; node( int data) { this .data = data; left = null ; right = null ; } }; // Function to find a pair with given sum static boolean existsPair(node root, int x) { // Iterators for BST Stack<node > it1 = new Stack<node>(), it2 = new Stack<node>(); // Initializing forward iterator node c = root; while (c != null ) { it1.push(c); c = c.left; } // Initializing backward iterator c = root; while (c != null ) { it2.push(c); c = c.right; } // Two pointer technique while (it1.peek() != it2.peek()) { // Variables to store values at // it1 and it2 int v1 = it1.peek().data, v2 = it2.peek().data; // Base case if (v1 + v2 == x) return true ; // Moving forward pointer if (v1 + v2 < x) { c = it1.peek().right; it1.pop(); while (c != null ) { it1.push(c); c = c.left; } } // Moving backward pointer else { c = it2.peek().left; it2.pop(); while (c != null ) { it2.push(c); c = c.right; } } } // Case when no pair is found return false ; } // Driver code public static void main(String[] args) { node root = new node( 5 ); root.left = new node( 3 ); root.right = new node( 7 ); root.left.left = new node( 2 ); root.left.right = new node( 4 ); root.right.left = new node( 6 ); root.right.right = new node( 8 ); int x = 5 ; // Calling required function if (existsPair(root, x)) System.out.print( "Yes" ); else System.out.print( "No" ); } } // This code is contributed by 29AjayKumar |
Python3
# Python3 implementation of the approach # Node of the binary tree class node: def __init__ ( self , key): self .data = key self .left = None self .right = None # Function that returns true if a pair # with given sum exists in the given BSTs def existsPair(root1, x): # Stack to store nodes for forward # and backward iterator it1, it2 = [], [] # Initializing forward iterator c = root1 while (c ! = None ): it1.append(c) c = c.left # Initializing backward iterator c = root1 while (c ! = None ): it2.append(c) c = c.right # Two pointer technique while (it1[ - 1 ] ! = it2[ - 1 ]): # To store the value of the nodes # current iterators are pointing to v1 = it1[ - 1 ].data v2 = it2[ - 1 ].data # Base case if (v1 + v2 = = x): return True # Moving forward iterator if (v1 + v2 < x): c = it1[ - 1 ].right del it1[ - 1 ] while (c ! = None ): it1.append(c) c = c.left # Moving backward iterator else : c = it2[ - 1 ].left del it2[ - 1 ] while (c ! = None ): it2.append(c) c = c.right # If no such pair found return False # Driver code if __name__ = = '__main__' : root2 = node( 5 ) root2.left = node( 3 ) root2.right = node( 7 ) root2.left.left = node( 2 ) root2.left.right = node( 4 ) root2.right.left = node( 6 ) root2.right.right = node( 8 ) x = 5 # Calling required function if (existsPair(root2, x)): print ( "Yes" ) else : print ( "No" ) # This code is contributed by mohit kumar 29 |
C#
// C# implementation of the approach using System; using System.Collections.Generic; class GFG { // Node of the binary tree public class node { public int data; public node left; public node right; public node( int data) { this .data = data; left = null ; right = null ; } }; // Function to find a pair with given sum static bool existsPair(node root, int x) { // Iterators for BST Stack<node > it1 = new Stack<node>(), it2 = new Stack<node>(); // Initializing forward iterator node c = root; while (c != null ) { it1.Push(c); c = c.left; } // Initializing backward iterator c = root; while (c != null ) { it2.Push(c); c = c.right; } // Two pointer technique while (it1.Peek() != it2.Peek()) { // Variables to store values at // it1 and it2 int v1 = it1.Peek().data, v2 = it2.Peek().data; // Base case if (v1 + v2 == x) return true ; // Moving forward pointer if (v1 + v2 < x) { c = it1.Peek().right; it1.Pop(); while (c != null ) { it1.Push(c); c = c.left; } } // Moving backward pointer else { c = it2.Peek().left; it2.Pop(); while (c != null ) { it2.Push(c); c = c.right; } } } // Case when no pair is found return false ; } // Driver code public static void Main(String[] args) { node root = new node(5); root.left = new node(3); root.right = new node(7); root.left.left = new node(2); root.left.right = new node(4); root.right.left = new node(6); root.right.right = new node(8); int x = 5; // Calling required function if (existsPair(root, x)) Console.Write( "Yes" ); else Console.Write( "No" ); } } // This code is contributed by Rajput-Ji |
Javascript
<script> // Javascript implementation of the approach // Node of the binary tree class node { constructor(data) { this .data = data; this .left = this .right = null ; } } // Function to find a pair with given sum function existsPair(root, x) { // Iterators for BST let it1 = [], it2 = []; // Initializing forward iterator let c = root; while (c != null ) { it1.push(c); c = c.left; } // Initializing backward iterator c = root; while (c != null ) { it2.push(c); c = c.right; } // Two pointer technique while (it1[it1.length-1] != it2[it2.length-1]) { // Variables to store values at // it1 and it2 let v1 = it1[it1.length - 1].data, v2 = it2[it2.length - 1].data; // Base case if (v1 + v2 == x) return true ; // Moving forward pointer if (v1 + v2 < x) { c = it1[it1.length - 1].right; it1.pop(); while (c != null ) { it1.push(c); c = c.left; } } // Moving backward pointer else { c = it2[it2.length - 1].left; it2.pop(); while (c != null ) { it2.push(c); c = c.right; } } } // Case when no pair is found return false ; } // Driver code let root = new node(5); root.left = new node(3); root.right = new node(7); root.left.left = new node(2); root.left.right = new node(4); root.right.left = new node(6); root.right.right = new node(8); let x = 5; // Calling required function if (existsPair(root, x)) document.write( "Yes" ); else document.write( "No" ); // This code is contributed by unknown2108 </script> |
Yes
Time Complexity: O(N).
Auxiliary Space: O(N).
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!