Sunday, November 17, 2024
Google search engine
HomeData Modelling & AINumber of K length subsequences with minimum sum

Number of K length subsequences with minimum sum

Given an array arr[] of size N and an integer K, the task is to find the number of K length subsequences of this array such that the sum of these subsequences is the minimum possible.

Examples: 

Input: arr[] = {1, 2, 3, 4}, K = 2 
Output:
Subsequences of length 2 are (1, 2), (1, 3), (1, 4), 
(2, 3), (2, 4) and (3, 4). 
The minimum sum is 3 and the only subsequence 
with this sum is (1, 2).

Input: arr[] = {2, 1, 2, 2, 2, 1}, K = 3 
Output: 4  

Approach: The minimum possible sum of a subsequence of length K from the given array is the sum of the K smallest elements of the array. Let X be the maximum element among the K smallest elements of the array, and let the number of times it occurs among the K, the smallest elements of the array, be Y, and, its total occurrence, in the complete array, be cntX. Now, there are cntXCY ways to select this element, in the K smallest elements, which is the count of required subsequences.

Below is the implementation of the above approach: 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the value of
// Binomial Coefficient C(n, k)
int binomialCoeff(int n, int k)
{
    int C[n + 1][k + 1];
    int i, j;
 
    // Calculate value of Binomial Coefficient
    // in bottom up manner
    for (i = 0; i <= n; i++) {
        for (j = 0; j <= min(i, k); j++) {
 
            // Base Cases
            if (j == 0 || j == i)
                C[i][j] = 1;
 
            // Calculate value using previously
            // stored values
            else
                C[i][j] = C[i - 1][j - 1] + C[i - 1][j];
        }
    }
 
    return C[n][k];
}
 
// Function to return the count
// of valid subsequences
int cntSubSeq(int arr[], int n, int k)
{
 
    // Sort the array
    sort(arr, arr + n);
 
    // Maximum among the minimum K elements
    int num = arr[k - 1];
 
    // Y will store the frequency of num
    // in the minimum K elements
    int Y = 0;
    for (int i = k - 1; i >= 0; i--) {
        if (arr[i] == num)
            Y++;
    }
 
    // cntX will store the frequency of
    // num in the complete array
    int cntX = Y;
    for (int i = k; i < n; i++) {
        if (arr[i] == num)
            cntX++;
    }
 
    return binomialCoeff(cntX, Y);
}
 
// Driver code
int main()
{
    int arr[] = { 1, 2, 3, 4 };
    int n = sizeof(arr) / sizeof(int);
    int k = 2;
 
    cout << cntSubSeq(arr, n, k);
 
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
     
    // Function to return the value of
    // Binomial Coefficient C(n, k)
    static int binomialCoeff(int n, int k)
    {
        int C[][] = new int [n + 1][k + 1];
        int i, j;
     
        // Calculate value of Binomial Coefficient
        // in bottom up manner
        for (i = 0; i <= n; i++)
        {
            for (j = 0; j <= Math.min(i, k); j++)
            {
     
                // Base Cases
                if (j == 0 || j == i)
                    C[i][j] = 1;
     
                // Calculate value using previously
                // stored values
                else
                    C[i][j] = C[i - 1][j - 1] +
                              C[i - 1][j];
            }
        }
        return C[n][k];
    }
     
    // Function to return the count
    // of valid subsequences
    static int cntSubSeq(int arr[], int n, int k)
    {
     
        // Sort the array
        Arrays.sort(arr);
     
        // Maximum among the minimum K elements
        int num = arr[k - 1];
     
        // Y will store the frequency of num
        // in the minimum K elements
        int Y = 0;
        for (int i = k - 1; i >= 0; i--)
        {
            if (arr[i] == num)
                Y++;
        }
     
        // cntX will store the frequency of
        // num in the complete array
        int cntX = Y;
        for (int i = k; i < n; i++)
        {
            if (arr[i] == num)
                cntX++;
        }
        return binomialCoeff(cntX, Y);
    }
     
    // Driver code
    public static void main (String[] args)
    {
        int arr[] = { 1, 2, 3, 4 };
        int n = arr.length;
        int k = 2;
     
        System.out.println(cntSubSeq(arr, n, k));
    }
}
 
// This code is contributed by AnkitRai01


C#




// C# implementation of the approach
using System;
     
class GFG
{
     
    // Function to return the value of
    // Binomial Coefficient C(n, k)
    static int binomialCoeff(int n, int k)
    {
        int [,]C = new int [n + 1, k + 1];
        int i, j;
     
        // Calculate value of Binomial Coefficient
        // in bottom up manner
        for (i = 0; i <= n; i++)
        {
            for (j = 0; j <= Math.Min(i, k); j++)
            {
     
                // Base Cases
                if (j == 0 || j == i)
                    C[i, j] = 1;
     
                // Calculate value using previously
                // stored values
                else
                    C[i, j] = C[i - 1, j - 1] +
                              C[i - 1, j];
            }
        }
        return C[n, k];
    }
     
    // Function to return the count
    // of valid subsequences
    static int cntSubSeq(int []arr, int n, int k)
    {
     
        // Sort the array
        Array.Sort(arr);
     
        // Maximum among the minimum K elements
        int num = arr[k - 1];
     
        // Y will store the frequency of num
        // in the minimum K elements
        int Y = 0;
        for (int i = k - 1; i >= 0; i--)
        {
            if (arr[i] == num)
                Y++;
        }
     
        // cntX will store the frequency of
        // num in the complete array
        int cntX = Y;
        for (int i = k; i < n; i++)
        {
            if (arr[i] == num)
                cntX++;
        }
        return binomialCoeff(cntX, Y);
    }
     
    // Driver code
    public static void Main (String[] args)
    {
        int []arr = { 1, 2, 3, 4 };
        int n = arr.Length;
        int k = 2;
     
        Console.WriteLine(cntSubSeq(arr, n, k));
    }
}
 
// This code is contributed by 29AjayKumar


Python3




# Python3 implementation of the approach
 
# Function to return the value of
# Binomial Coefficient C(n, k)
def binomialCoeff(n, k) :
 
    C = [[0 for i in range(n + 1)]
               for j in range(k + 1)]
 
    # Calculate value of Binomial Coefficient
    # in bottom up manner
    for i in range (0, n + 1 ):
        for j in range (0, min(i, k) + 1):
 
            # Base Cases
            if (j == 0 or j == i):
                C[i][j] = 1
 
            # Calculate value using previously
            # stored values
            else :
                C[i][j] = C[i - 1][j - 1] + C[i - 1][j]
         
    return C[n][k]
 
# Function to return the count
# of valid subsequences
def cntSubSeq(arr, n, k) :
 
    # Sort the array
    arr.sort()
 
    # Maximum among the minimum K elements
    num = arr[k - 1];
 
    # Y will store the frequency of num
    # in the minimum K elements
    Y = 0;
    for i in range (k - 1, -1, 1) :
        if (arr[i] == num):
            Y += 1
 
    # cntX will store the frequency of
    # num in the complete array
    cntX = Y;
    for i in range (k, n):
        if (arr[i] == num) :
            cntX += 1
     
    return binomialCoeff(cntX, Y)
 
# Driver code
arr = [ 1, 2, 3, 4 ]
n = len(arr)
k = 2
print(cntSubSeq(arr, n, k))
 
# This code is contributed by ihritik


Javascript




<script>
// Javascript implementation of the
// above approach
 
// Function for the binomial coefficient
function binomialCoeff(n, k)
{
 
    var C = new Array(n + 1);
    // Loop to create 2D array using 1D array
    for (var i = 0; i < C.length; i++) {
        C[i] = new Array(k + 1);
    }
    var i, j;
   
    // Calculate value of Binomial Coefficient
    // in bottom up manner
    for (i = 0; i <= n; i++) {
        for (j = 0; j <= Math.min(i, k); j++) {
            // Base Cases
            if (j == 0 || j == i)
                C[i][j] = 1;
   
            // Calculate value using previously
            // stored values
            else
                C[i][j] = C[i - 1][j - 1] + C[i - 1][j];
        }
    }
   
    return C[n][k];
}
   
// Function to return the count
// of valid subsequences
function cntSubSeq(arr, n, k)
{
   
    // Sort the array
    arr.sort();
   
    // Maximum among the minimum K elements
    var num = arr[k - 1];
   
    // Y will store the frequency of num
    // in the minimum K elements
    var Y = 0;
    for (var i = k - 1; i >= 0; i--) {
        if (arr[i] == num)
            Y+=1;
    }
   
    // cntX will store the frequency of
    // num in the complete array
    var cntX = Y;
    for (var i = k; i < n; i++) {
        if (arr[i] == num)
            cntX+=1;
    }
   
    return binomialCoeff(cntX, Y);
}
 
// Driver code
var arr = [ 1, 2, 3, 4 ];
var n = arr.length;
var k = 2;
document.write(cntSubSeq(arr, n, k));
 
// This code is contributed by ShubhamSingh10
</script>


Output: 

1

 

Time Complexity: o(n2)

Auxiliary Space: O(n * k)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments