Monday, November 18, 2024
Google search engine
HomeData Modelling & AINon-overlapping sum of two sets

Non-overlapping sum of two sets

Given two arrays A[] and B[] of size n. It is given that both array individually contains distinct elements. We need to find the sum of all elements that are not common.

Examples: 

Input : A[] = {1, 5, 3, 8}
        B[] = {5, 4, 6, 7}
Output : 29
1 + 3 + 4 + 6 + 7 + 8 = 29

Input : A[] = {1, 5, 3, 8}
        B[] = {5, 1, 8, 3}
Output : 0
All elements are common.

Brute Force Method: One simple approach is that for each element in A[] check whether it is present in B[], if it is present in then add it to the result. Similarly, traverse B[] and for every element that is not present in B, add it to result. 
Time Complexity: O(n2).
Auxiliary Space: O(1), As constant extra space is used.

Hashing concept: Create an empty hash and insert elements of both arrays into it. Now traverse hash table and add all those elements whose count is 1. (As per the question, both arrays individually have distinct elements)

Below is the implementation of the above approach:

C++




// CPP program to find Non-overlapping sum
#include <bits/stdc++.h>
using namespace std;
 
 
// function for calculating
// Non-overlapping sum of two array
int findSum(int A[], int B[], int n)
{
    // Insert elements of both arrays
    unordered_map<int, int> hash;   
    for (int i = 0; i < n; i++) {
        hash[A[i]]++;
        hash[B[i]]++;
    }
 
    // calculate non-overlapped sum
    int sum = 0;
    for (auto x: hash)
        if (x.second == 1)
            sum += x.first;
     
    return sum;
}
 
// driver code
int main()
{
    int A[] = { 5, 4, 9, 2, 3 };
    int B[] = { 2, 8, 7, 6, 3 };
     
    // size of array
    int n = sizeof(A) / sizeof(A[0]);
 
    // function call
    cout << findSum(A, B, n);
    return 0;
}


Java




// Java program to find Non-overlapping sum
import java.io.*;
import java.util.*;
 
class GFG
{
 
    // function for calculating
    // Non-overlapping sum of two array
    static int findSum(int[] A, int[] B, int n)
    {
        // Insert elements of both arrays
        HashMap<Integer, Integer> hash = new HashMap<>();
        for (int i = 0; i < n; i++)
        {
            if (hash.containsKey(A[i]))
                hash.put(A[i], 1 + hash.get(A[i]));
            else
                hash.put(A[i], 1);
 
            if (hash.containsKey(B[i]))
                hash.put(B[i], 1 + hash.get(B[i]));
            else
                hash.put(B[i], 1);
        }
 
        // calculate non-overlapped sum
        int sum = 0;
        for (Map.Entry entry : hash.entrySet())
        {
            if (Integer.parseInt((entry.getValue()).toString()) == 1)
                sum += Integer.parseInt((entry.getKey()).toString());
        }
 
        return sum;
 
    }
 
    // Driver code
    public static void main(String args[])
    {
        int[] A = { 5, 4, 9, 2, 3 };
        int[] B = { 2, 8, 7, 6, 3 };
 
        // size of array
        int n = A.length;
 
        // function call
        System.out.println(findSum(A, B, n));
    }
}
 
// This code is contributed by rachana soma


Python3




# Python3 program to find Non-overlapping sum
from collections import defaultdict
 
# Function for calculating
# Non-overlapping sum of two array
def findSum(A, B, n):
 
    # Insert elements of both arrays
    Hash = defaultdict(lambda:0)
    for i in range(0, n):
        Hash[A[i]] += 1
        Hash[B[i]] += 1
 
    # calculate non-overlapped sum
    Sum = 0
    for x in Hash:
        if Hash[x] == 1:
            Sum += x
     
    return Sum
 
# Driver code
if __name__ == "__main__":
 
    A = [5, 4, 9, 2, 3]
    B = [2, 8, 7, 6, 3]
     
    # size of array
    n = len(A)
 
    # Function call
    print(findSum(A, B, n))
     
# This code is contributed
# by Rituraj Jain


C#




// C# program to find Non-overlapping sum
using System;
using System.Collections.Generic;
     
class GFG
{
 
    // function for calculating
    // Non-overlapping sum of two array
    static int findSum(int[] A, int[] B, int n)
    {
        // Insert elements of both arrays
        Dictionary<int, int> hash = new Dictionary<int, int>();
        for (int i = 0; i < n; i++)
        {
            if (hash.ContainsKey(A[i]))
            {
                var v = hash[A[i]];
                hash.Remove(A[i]);
                hash.Add(A[i], 1 + v);
            }
            else
                hash.Add(A[i], 1);
 
            if (hash.ContainsKey(B[i]))
            {
                var v = hash[B[i]];
                hash.Remove(B[i]);
                hash.Add(B[i], 1 + v);
            }
            else
                hash.Add(B[i], 1);
        }
 
        // calculate non-overlapped sum
        int sum = 0;
        foreach(KeyValuePair<int, int> entry in hash)
        {
            if ((entry.Value) == 1)
                sum += entry.Key;
        }
 
        return sum;
 
    }
 
    // Driver code
    public static void Main(String []args)
    {
        int[] A = { 5, 4, 9, 2, 3 };
        int[] B = { 2, 8, 7, 6, 3 };
 
        // size of array
        int n = A.Length;
 
        // function call
        Console.WriteLine(findSum(A, B, n));
    }
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
 
// JavaScript program to find Non-overlapping sum
 
// function for calculating
// Non-overlapping sum of two array
function findSum(A, B, n) {
    // Insert elements of both arrays
    let hash = new Map();
    for (let i = 0; i < n; i++) {
        if (hash.has(A[i]))
            hash.set(A[i], 1 + hash.get(A[i]));
        else
            hash.set(A[i], 1);
 
        if (hash.has(B[i]))
            hash.set(B[i], 1 + hash.get(B[i]));
        else
            hash.set(B[i], 1);
    }
 
    // calculate non-overlapped sum
    let sum = 0;
    for (let entry of hash) {
        if (parseInt((entry[1]).toString()) == 1)
            sum += parseInt((entry[0]).toString());
    }
 
    return sum;
 
}
 
// Driver code
 
let A = [5, 4, 9, 2, 3];
let B = [2, 8, 7, 6, 3];
 
// size of array
let n = A.length;
 
// function call
document.write(findSum(A, B, n));
 
// This code is contributed by gfgking
 
</script>


Output

39

Time Complexity: O(n), since inserting in an unordered map is amortized constant.
Auxiliary Space: O(n).

Another method: Using set data structure

  • Insert elements of Array A in the set data structure and add into sum
  • Check if B’s elements are there in set if exist then remove current element from set, otherwise add current element to sum
  • Finally, return sum

Below is the implementation of the above approach:

C++




// CPP program to find Non-overlapping sum
#include <bits/stdc++.h>
using namespace std;
 
// function for calculating
// Non-overlapping sum of two array
int findSum(int A[], int B[], int n)
{
    int sum = 0;
 
    // Insert elements of Array A in set
    // and add into sum
    set<int> st;
    for (int i = 0; i < n; i++) {
        st.insert(A[i]);
        sum += A[i];
    }
 
    // Check if B's element are there in set
    // if exist then remove current element from
    // set, otherwise add current element into sum
    for (int i = 0; i < n; i++) {
        if (st.find(B[i]) == st.end()) {
            sum += B[i];
        }
        else {
            sum -= B[i];
        }
    }
 
    // Finally, return sum
    return sum;
}
 
// Driver code
int main()
{
    int A[] = { 5, 4, 9, 2, 3 };
    int B[] = { 2, 8, 7, 6, 3 };
 
    // size of array
    int n = sizeof(A) / sizeof(A[0]);
 
    // function call
    cout << findSum(A, B, n);
    return 0;
}
 
// This code is contributed by hkdass001


Java




// Java program to find Non-overlapping sum
 
import java.io.*;
import java.util.*;
 
class GFG {
   
      // function for calculating
    // Non-overlapping sum of two array
    public static int findSum(int[] A, int[] B, int n) {
        int sum = 0;
 
        // Insert elements of Array A in set
        // and add into sum
        Set<Integer> st = new HashSet<>();
        for (int i = 0; i < n; i++) {
            st.add(A[i]);
            sum += A[i];
        }
 
        // Check if B's element are there in set
        // if exist then remove current element from
        // set, otherwise add current element into sum
        for (int i = 0; i < n; i++) {
            if (!st.contains(B[i])) {
                sum += B[i];
            }
            else {
                sum -= B[i];
            }
        }
 
        // Finally, return sum
        return sum;
    }
   
    public static void main (String[] args) {
        int[] A = { 5, 4, 9, 2, 3 };
        int[] B = { 2, 8, 7, 6, 3 };
 
        // size of array
        int n = A.length;
 
        // function call
        System.out.println(findSum(A, B, n));
    }
}
 
// This code is contributed by lokesh.


Python3




# python program to find Non-overlapping sum
 
# function for calculating
# Non-overlapping sum of two array
def findSum(A, B, n):
    sum = 0;
 
    # Insert elements of Array A in set
    # and add into sum
    st = set();
    for i in range(0,n):
        st.add(A[i]);
        sum += A[i];
     
    # Check if B's element are there in set
    # if exist then remove current element from
    # set, otherwise add current element into sum
    for i in range (0, n):
        if (B[i] in st):
            sum -= B[i];
        else :
            sum += B[i];
 
    # Finally, return sum
    return sum;
 
# Driver code
A = [ 5, 4, 9, 2, 3 ];
B = [ 2, 8, 7, 6, 3 ];
 
# size of array
n = len(A);
 
# function call
print(findSum(A, B, n));


C#




// C# code for the above approach
 
using System;
using System.Collections.Generic;
 
public class GFG {
 
    // function for calculating
    // Non-overlapping sum of two array
    public static int FindSum(int[] A, int[] B, int n)
    {
        int sum = 0;
 
        // Insert elements of Array A in set
        // and add into sum
        HashSet<int> st = new HashSet<int>();
        for (int i = 0; i < n; i++) {
            st.Add(A[i]);
            sum += A[i];
        }
 
        // Check if B's element are there in set
        // if exist then remove current element from
        // set, otherwise add current element into sum
        for (int i = 0; i < n; i++) {
            if (!st.Contains(B[i])) {
                sum += B[i];
            }
            else {
                sum -= B[i];
            }
        }
 
        // Finally, return sum
        return sum;
    }
 
    static public void Main()
    {
 
        // Code
        int[] A = { 5, 4, 9, 2, 3 };
        int[] B = { 2, 8, 7, 6, 3 };
 
        // size of array
        int n = A.Length;
 
        // function call
        Console.WriteLine(FindSum(A, B, n));
    }
}
 
// This code is contributed by lokeshmvs21.


Javascript




// Javascript program to find Non-overlapping sum
 
// function for calculating
// Non-overlapping sum of two array
function findSum(A, B, n)
{
    let sum = 0;
 
    // Insert elements of Array A in set
    // and add into sum
    let st = new Set();
    for (let i = 0; i < n; i++) {
        st.add(A[i]);
        sum += A[i];
    }
     
    // Check if B's element are there in set
    // if exist then remove current element from
    // set, otherwise add current element into sum
    for (let i = 0; i < n; i++) {
        if (!st.has(B[i])) {
            sum += B[i];
        }
        else {
            sum -= B[i];
        }
    }
 
    // Finally, return sum
    return sum;
}
 
// Driver code
    let A = [ 5, 4, 9, 2, 3 ];
    let B = [ 2, 8, 7, 6, 3 ];
 
    // size of array
    let n = A.length;
 
    // function call
    document.write(findSum(A, B, n));


Output

39

Time Complexity: O(n*log n)
Auxiliary Space: O(n)
 

This article is contributed by Aarti_Rathi. If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments