Monday, September 23, 2024
Google search engine
HomeData Modelling & AIModular multiplicative inverse

Modular multiplicative inverse

Given two integers A and M, find the modular multiplicative inverse of A under modulo M.
The modular multiplicative inverse is an integer X such that:

A X ≅ 1 (mod M)   

Note: The value of X should be in the range {1, 2, … M-1}, i.e., in the range of integer modulo M. ( Note that X cannot be 0 as A*0 mod M will never be 1). The multiplicative inverse of “A modulo M” exists if and only if A and M are relatively prime (i.e. if gcd(A, M) = 1)

Examples: 

Input: A = 3, M = 11
Output: 4
Explanation: Since (4*3) mod 11 = 1, 4 is modulo inverse of 3(under 11).
One might think, 15 also as a valid output as “(15*3) mod 11” 
is also 1, but 15 is not in range {1, 2, … 10}, so not valid.

Input:  A = 10, M = 17
Output: 12
Explanation: Since (10*12) mod 17 = 1, 12 is modulo inverse of 10(under 17).

Naive Approach:  To solve the problem, follow the below idea:

A naive method is to try all numbers from 1 to m. For every number x, check if (A * X) % M is 1

Below is the implementation of the above approach:

C++




// C++ program to find modular
// inverse of A under modulo M
#include <bits/stdc++.h>
using namespace std;
 
// A naive method to find modular
// multiplicative inverse of 'A'
// under modulo 'M'
 
int modInverse(int A, int M)
{
    for (int X = 1; X < M; X++)
        if (((A % M) * (X % M)) % M == 1)
            return X;
}
 
// Driver code
int main()
{
    int A = 3, M = 11;
 
    // Function call
    cout << modInverse(A, M);
    return 0;
}


Java




// Java program to find modular inverse
// of A under modulo M
import java.io.*;
 
class GFG {
 
    // A naive method to find modulor
    // multiplicative inverse of A
    // under modulo M
    static int modInverse(int A, int M)
    {
 
        for (int X = 1; X < M; X++)
            if (((A % M) * (X % M)) % M == 1)
                return X;
        return 1;
    }
 
    // Driver Code
    public static void main(String args[])
    {
        int A = 3, M = 11;
 
        // Function call
        System.out.println(modInverse(A, M));
    }
}
 
/*This code is contributed by Nikita Tiwari.*/


Python3




# Python3 program to find modular
# inverse of A under modulo M
 
# A naive method to find modulor
# multiplicative inverse of A
# under modulo M
 
 
def modInverse(A, M):
 
    for X in range(1, M):
        if (((A % M) * (X % M)) % M == 1):
            return X
    return -1
 
 
# Driver Code
if __name__ == "__main__":
    A = 3
    M = 11
 
    # Function call
    print(modInverse(A, M))
 
# This code is contributed by Nikita Tiwari.


C#




// C# program to find modular inverse
// of A under modulo M
using System;
 
class GFG {
 
    // A naive method to find modulor
    // multiplicative inverse of A
    // under modulo M
    static int modInverse(int A, int M)
    {
 
        for (int X = 1; X < M; X++)
            if (((A % M) * (X % M)) % M == 1)
                return X;
        return 1;
    }
 
    // Driver Code
    public static void Main()
    {
        int A = 3, M = 11;
 
        // Function call
        Console.WriteLine(modInverse(A, M));
    }
}
 
// This code is contributed by anuj_67.


PHP




<?php
// PHP program to find modular
// inverse of A under modulo M
 
// A naive method to find modulor
// multiplicative inverse of
// A under modulo M
function modInverse( $A, $M)
{
     
    for ($X = 1; $X < $M; $X++)
        if ((($A%$M) * ($X%$M)) % $M == 1)
            return $X;
}
 
// Driver Code
$A = 3;
$M = 11;
 
// Function call
echo modInverse($A, $M);
 
// This code is contributed by anuj_67.
?>


Javascript




<script>
 
// Javascript program to find modular
// inverse of a under modulo m
 
// A naive method to find modulor
// multiplicative inverse of
// 'a' under modulo 'm'
function modInverse(a, m)
{
    for(let x = 1; x < m; x++)
        if (((a % m) * (x % m)) % m == 1)
            return x;
}
 
// Driver Code
let a = 3;
let m = 11;
 
// Function call
document.write(modInverse(a, m));
 
// This code is contributed by _saurabh_jaiswal.
 
</script>


Output

4

Time Complexity: O(M)
Auxiliary Space: O(1)

Modular multiplicative inverse when M and A are coprime or gcd(A, M)=1:

The idea is to use Extended Euclidean algorithms that take two integers ‘a’ and ‘b’, then find their gcd, and also find ‘x’ and ‘y’ such that 

ax + by = gcd(a, b)

To find the multiplicative inverse of ‘A’ under ‘M’, we put b = M in the above formula. Since we know that A and M are relatively prime, we can put the value of gcd as 1.

Ax + My = 1

If we take modulo M on both sides, we get

Ax + My ≅ 1 (mod M)

We can remove the second term on left side as ‘My (mod M)’ would always be 0 for an integer y. 

Ax  ≅ 1 (mod M)

So the ‘x’ that we can find using Extended Euclid Algorithm is the multiplicative inverse of ‘A’

Below is the implementation of the above approach:  

C++




// C++ program to find multiplicative modulo
// inverse using Extended Euclid algorithm.
#include <bits/stdc++.h>
using namespace std;
 
// Function for extended Euclidean Algorithm
int gcdExtended(int a, int b, int* x, int* y);
 
// Function to find modulo inverse of a
void modInverse(int A, int M)
{
    int x, y;
    int g = gcdExtended(A, M, &x, &y);
    if (g != 1)
        cout << "Inverse doesn't exist";
    else {
 
        // m is added to handle negative x
        int res = (x % M + M) % M;
        cout << "Modular multiplicative inverse is " << res;
    }
}
 
// Function for extended Euclidean Algorithm
int gcdExtended(int a, int b, int* x, int* y)
{
 
    // Base Case
    if (a == 0) {
        *x = 0, *y = 1;
        return b;
    }
 
    // To store results of recursive call
    int x1, y1;
    int gcd = gcdExtended(b % a, a, &x1, &y1);
 
    // Update x and y using results of recursive
    // call
    *x = y1 - (b / a) * x1;
    *y = x1;
 
    return gcd;
}
 
// Driver Code
int main()
{
    int A = 3, M = 11;
 
    // Function call
    modInverse(A, M);
    return 0;
}
 
// This code is contributed by khushboogoyal499


C




// C program to find multiplicative modulo inverse using
// Extended Euclid algorithm.
#include <stdio.h>
 
// C function for extended Euclidean Algorithm
int gcdExtended(int a, int b, int* x, int* y);
 
// Function to find modulo inverse of a
void modInverse(int A, int M)
{
    int x, y;
    int g = gcdExtended(A, M, &x, &y);
    if (g != 1)
        printf("Inverse doesn't exist");
    else {
        // m is added to handle negative x
        int res = (x % M + M) % M;
        printf("Modular multiplicative inverse is %d", res);
    }
}
 
// C function for extended Euclidean Algorithm
int gcdExtended(int a, int b, int* x, int* y)
{
    // Base Case
    if (a == 0) {
        *x = 0, *y = 1;
        return b;
    }
 
    int x1, y1; // To store results of recursive call
    int gcd = gcdExtended(b % a, a, &x1, &y1);
 
    // Update x and y using results of recursive
    // call
    *x = y1 - (b / a) * x1;
    *y = x1;
 
    return gcd;
}
 
// Driver Code
int main()
{
    int A = 3, M = 11;
 
    // Function call
    modInverse(A, M);
    return 0;
}


Java




// java program to find multiplicative modulo
// inverse using Extended Euclid algorithm.
public class GFG {
 
    // Global Variables
    public static int x;
    public static int y;
 
    // Function for extended Euclidean Algorithm
    static int gcdExtended(int a, int b)
    {
 
        // Base Case
        if (a == 0) {
            x = 0;
            y = 1;
            return b;
        }
 
        // To store results of recursive call
        int gcd = gcdExtended(b % a, a);
        int x1 = x;
        int y1 = y;
 
        // Update x and y using results of recursive
        // call
        int tmp = b / a;
        x = y1 - tmp * x1;
        y = x1;
 
        return gcd;
    }
 
    static void modInverse(int A, int M)
    {
        int g = gcdExtended(A, M);
        if (g != 1) {
            System.out.println("Inverse doesn't exist");
        }
        else {
 
            // m is added to handle negative x
            int res = (x % M + M) % M;
            System.out.println(
                "Modular multiplicative inverse is " + res);
        }
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int A = 3, M = 11;
 
        // Function Call
        modInverse(A, M);
    }
}
 
// The code is contributed by Gautam goel (gautamgoel962)


Python3




# Python3 program to find multiplicative modulo
# inverse using Extended Euclid algorithm.
 
# Global Variables
x, y = 0, 1
 
# Function for extended Euclidean Algorithm
 
 
def gcdExtended(a, b):
    global x, y
 
    # Base Case
    if (a == 0):
        x = 0
        y = 1
        return b
 
    # To store results of recursive call
    gcd = gcdExtended(b % a, a)
    x1 = x
    y1 = y
 
    # Update x and y using results of recursive
    # call
    x = y1 - (b // a) * x1
    y = x1
 
    return gcd
 
 
def modInverse(A, M):
 
    g = gcdExtended(A, M)
    if (g != 1):
        print("Inverse doesn't exist")
 
    else:
 
        # m is added to handle negative x
        res = (x % M + M) % M
        print("Modular multiplicative inverse is ", res)
 
 
# Driver Code
if __name__ == "__main__":
    A = 3
    M = 11
 
    # Function call
    modInverse(A, M)
 
 
# This code is contributed by phasing17


C#




// C# program to find multiplicative modulo
// inverse using Extended Euclid algorithm.
 
using System;
 
public class GFG {
    public static int x, y;
 
    // Function for extended Euclidean Algorithm
    static int gcdExtended(int a, int b)
    {
 
        // Base Case
        if (a == 0) {
            x = 0;
            y = 1;
            return b;
        }
 
        // To store results of recursive call
        int gcd = gcdExtended(b % a, a);
        int x1 = x;
        int y1 = y;
 
        // Update x and y using results of recursive
        // call
        x = y1 - (b / a) * x1;
        y = x1;
 
        return gcd;
    }
 
    // Function to find modulo inverse of a
    static void modInverse(int A, int M)
    {
        int g = gcdExtended(A, M);
        if (g != 1)
            Console.Write("Inverse doesn't exist");
        else {
 
            // M is added to handle negative x
            int res = (x % M + M) % M;
            Console.Write(
                "Modular multiplicative inverse is " + res);
        }
    }
 
    // Driver Code
    public static void Main(string[] args)
    {
        int A = 3, M = 11;
 
        // Function call
        modInverse(A, M);
    }
}
 
// this code is contributed by phasing17


PHP




<?php
// PHP program to find multiplicative modulo
// inverse using Extended Euclid algorithm.
// Function to find modulo inverse of a
function modInverse($A, $M)
{
    $x = 0;
    $y = 0;
    $g = gcdExtended($A, $M, $x, $y);
    if ($g != 1)
        echo "Inverse doesn't exist";
    else
    {
        // m is added to handle negative x
        $res = ($x % $M + $M) % $M;
        echo "Modular multiplicative " .
                   "inverse is " . $res;
    }
}
 
// function for extended Euclidean Algorithm
function gcdExtended($a, $b, &$x, &$y)
{
    // Base Case
    if ($a == 0)
    {
        $x = 0;
        $y = 1;
        return $b;
    }
 
    $x1;
    $y1; // To store results of recursive call
    $gcd = gcdExtended($b%$a, $a, $x1, $y1);
 
    // Update x and y using results of
    // recursive call
    $x = $y1 - (int)($b/$a) * $x1;
    $y = $x1;
 
    return $gcd;
}
 
// Driver Code
$A = 3;
$M = 11;
 
// Function call
modInverse($A, $M);
 
// This code is contributed by chandan_jnu
?>


Javascript




<script>
// JavaScript program to find multiplicative modulo
// inverse using Extended Euclid algorithm.
 
// Global Variables
let x, y;
 
// Function for extended Euclidean Algorithm
function gcdExtended(a, b){
      
    // Base Case
    if (a == 0)
    {
        x = 0;
        y = 1;
        return b;
    }
      
    // To store results of recursive call   
    let gcd = gcdExtended(b % a, a);
    let x1 = x;
    let y1 = y;
 
    // Update x and y using results of recursive
    // call
    x = y1 - Math.floor(b / a) * x1;
    y = x1;
  
    return gcd;
}
 
function modInverse(a, m)
{
    let g = gcdExtended(a, m);
    if (g != 1){
        document.write("Inverse doesn't exist");
    }
    else{
          
        // m is added to handle negative x
        let res = (x % m + m) % m;
        document.write("Modular multiplicative inverse is ", res);
        }
}
 
// Driver Code
{
    let a = 3, m = 11;
    
    // Function call
    modInverse(a, m);
}
  
// This code is contributed by Gautam goel (gautamgoel962)
</script>


Output

Modular multiplicative inverse is 4

Time Complexity: O(log M)
Auxiliary Space: O(log M), because of the internal recursion stack.

 Iterative Implementation of the above approach:

C++




// Iterative C++ program to find modular
// inverse using extended Euclid algorithm
 
#include <bits/stdc++.h>
using namespace std;
 
// Returns modulo inverse of a with respect
// to m using extended Euclid Algorithm
// Assumption: a and m are coprimes, i.e.,
// gcd(A, M) = 1
int modInverse(int A, int M)
{
    int m0 = M;
    int y = 0, x = 1;
 
    if (M == 1)
        return 0;
 
    while (A > 1) {
        // q is quotient
        int q = A / M;
        int t = M;
 
        // m is remainder now, process same as
        // Euclid's algo
        M = A % M, A = t;
        t = y;
 
        // Update y and x
        y = x - q * y;
        x = t;
    }
 
    // Make x positive
    if (x < 0)
        x += m0;
 
    return x;
}
 
// Driver Code
int main()
{
    int A = 3, M = 11;
 
    // Function call
    cout << "Modular multiplicative inverse is "
         << modInverse(A, M);
    return 0;
}
// this code is contributed by shivanisinghss2110


C




// Iterative C program to find modular
// inverse using extended Euclid algorithm
 
#include <stdio.h>
 
// Returns modulo inverse of a with respect
// to m using extended Euclid Algorithm
// Assumption: a and m are coprimes, i.e.,
// gcd(A, M) = 1
int modInverse(int A, int M)
{
    int m0 = M;
    int y = 0, x = 1;
 
    if (M == 1)
        return 0;
 
    while (A > 1) {
        // q is quotient
        int q = A / M;
        int t = M;
 
        // m is remainder now, process same as
        // Euclid's algo
        M = A % M, A = t;
        t = y;
 
        // Update y and x
        y = x - q * y;
        x = t;
    }
 
    // Make x positive
    if (x < 0)
        x += m0;
 
    return x;
}
 
// Driver Code
int main()
{
    int A = 3, M = 11;
 
    // Function call
    printf("Modular multiplicative inverse is %d\n",
           modInverse(A, M));
    return 0;
}


Java




// Iterative Java program to find modular
// inverse using extended Euclid algorithm
 
class GFG {
 
    // Returns modulo inverse of a with
    // respect to m using extended Euclid
    // Algorithm Assumption: a and m are
    // coprimes, i.e., gcd(A, M) = 1
    static int modInverse(int A, int M)
    {
        int m0 = M;
        int y = 0, x = 1;
 
        if (M == 1)
            return 0;
 
        while (A > 1) {
            // q is quotient
            int q = A / M;
 
            int t = M;
 
            // m is remainder now, process
            // same as Euclid's algo
            M = A % M;
            A = t;
            t = y;
 
            // Update x and y
            y = x - q * y;
            x = t;
        }
 
        // Make x positive
        if (x < 0)
            x += m0;
 
        return x;
    }
 
    // Driver code
    public static void main(String args[])
    {
        int A = 3, M = 11;
 
        // Function call
        System.out.println("Modular multiplicative "
                           + "inverse is "
                           + modInverse(A, M));
    }
}
 
/*This code is contributed by Nikita Tiwari.*/


Python3




# Iterative Python 3 program to find
# modular inverse using extended
# Euclid algorithm
 
# Returns modulo inverse of a with
# respect to m using extended Euclid
# Algorithm Assumption: a and m are
# coprimes, i.e., gcd(A, M) = 1
 
 
def modInverse(A, M):
    m0 = M
    y = 0
    x = 1
 
    if (M == 1):
        return 0
 
    while (A > 1):
 
        # q is quotient
        q = A // M
 
        t = M
 
        # m is remainder now, process
        # same as Euclid's algo
        M = A % M
        A = t
        t = y
 
        # Update x and y
        y = x - q * y
        x = t
 
    # Make x positive
    if (x < 0):
        x = x + m0
 
    return x
 
 
# Driver code
if __name__ == "__main__":
    A = 3
    M = 11
 
    # Function call
    print("Modular multiplicative inverse is",
          modInverse(A, M))
 
# This code is contributed by Nikita tiwari.


C#




// Iterative C# program to find modular
// inverse using extended Euclid algorithm
using System;
class GFG {
 
    // Returns modulo inverse of a with
    // respect to m using extended Euclid
    // Algorithm Assumption: a and m are
    // coprimes, i.e., gcd(A, M) = 1
    static int modInverse(int A, int M)
    {
        int m0 = M;
        int y = 0, x = 1;
 
        if (M == 1)
            return 0;
 
        while (A > 1) {
            // q is quotient
            int q = A / M;
 
            int t = M;
 
            // m is remainder now, process
            // same as Euclid's algo
            M = A % M;
            A = t;
            t = y;
 
            // Update x and y
            y = x - q * y;
            x = t;
        }
 
        // Make x positive
        if (x < 0)
            x += m0;
 
        return x;
    }
 
    // Driver Code
    public static void Main()
    {
        int A = 3, M = 11;
 
        // Function call
        Console.WriteLine("Modular multiplicative "
                          + "inverse is "
                          + modInverse(A, M));
    }
}
 
// This code is contributed by anuj_67.


PHP




<?php
// Iterative PHP program to find modular
// inverse using extended Euclid algorithm
 
// Returns modulo inverse of a with respect
// to m using extended Euclid Algorithm
// Assumption: a and m are coprimes, i.e.,
// gcd(a, m) = 1
function modInverse($A, $M)
{
    $m0 = $M;
    $y = 0;
    $x = 1;
 
    if ($m == 1)
    return 0;
 
    while ($A > 1)
    {
         
        // q is quotient
        $q = (int) ($A / $M);
        $t = $M;
 
        // m is remainder now,
        // process same as
        // Euclid's algo
        $M = $A % $M;
        $A = $t;
        $t = $y;
 
        // Update y and x
        $y = $x - $q * $y;
        $x = $t;
    }
 
    // Make x positive
    if ($x < 0)
    $x += $m0;
 
    return $x;
}
 
    // Driver Code
    $A = 3;
    $M = 11;
 
    // Function call
    echo "Modular multiplicative inverse is: ",
                            modInverse($A, $M);
         
// This code is contributed by Anuj_67
?>


Javascript




<script>
 
// Iterative Javascript program to find modular
// inverse using extended Euclid algorithm
 
// Returns modulo inverse of a with respect
// to m using extended Euclid Algorithm
// Assumption: a and m are coprimes, i.e.,
// gcd(a, m) = 1
function modInverse(a, m)
{
    let m0 = m;
    let y = 0;
    let x = 1;
 
    if (m == 1)
        return 0;
 
    while (a > 1)
    {
         
        // q is quotient
        let q = parseInt(a / m);
        let t = m;
 
        // m is remainder now,
        // process same as
        // Euclid's algo
        m = a % m;
        a = t;
        t = y;
 
        // Update y and x
        y = x - q * y;
        x = t;
    }
 
    // Make x positive
    if (x < 0)
        x += m0;
 
    return x;
}
 
// Driver Code
let a = 3;
let m = 11;
 
// Function call
document.write(`Modular multiplicative inverse is ${modInverse(a, m)}`);
     
// This code is contributed by _saurabh_jaiswal
 
</script>


Output

Modular multiplicative inverse is 4

Time Complexity: O(log m)
Auxiliary Space: O(1)

Modular multiplicative inverse when M is prime:

If we know M is prime, then we can also use Fermat’s little theorem to find the inverse. 

aM-1 ≅ 1 (mod M)

If we multiply both sides with a-1, we get 

a-1 ≅ a M-2 (mod M)

Below is the implementation of the above approach:

C++




// C++ program to find modular inverse of A under modulo M
// This program works only if M is prime.
#include <bits/stdc++.h>
using namespace std;
 
// To find GCD of a and b
int gcd(int a, int b);
 
// To compute x raised to power y under modulo M
int power(int x, unsigned int y, unsigned int M);
 
// Function to find modular inverse of a under modulo M
// Assumption: M is prime
void modInverse(int A, int M)
{
    int g = gcd(A, M);
    if (g != 1)
        cout << "Inverse doesn't exist";
    else {
        // If a and m are relatively prime, then modulo
        // inverse is a^(m-2) mode m
        cout << "Modular multiplicative inverse is "
             << power(A, M - 2, M);
    }
}
 
// To compute x^y under modulo m
int power(int x, unsigned int y, unsigned int M)
{
    if (y == 0)
        return 1;
 
    int p = power(x, y / 2, M) % M;
    p = (p * p) % M;
 
    return (y % 2 == 0) ? p : (x * p) % M;
}
 
// Function to return gcd of a and b
int gcd(int a, int b)
{
    if (a == 0)
        return b;
    return gcd(b % a, a);
}
 
// Driver code
int main()
{
    int A = 3, M = 11;
 
    // Function call
    modInverse(A, M);
    return 0;
}


Java




// Java program to find modular
// inverse of A under modulo M
// This program works only if
// M is prime.
import java.io.*;
 
class GFG {
 
    // Function to find modular inverse of a
    // under modulo M Assumption: M is prime
    static void modInverse(int A, int M)
    {
        int g = gcd(A, M);
        if (g != 1)
            System.out.println("Inverse doesn't exist");
        else {
            // If a and m are relatively prime, then modulo
            // inverse is a^(m-2) mode m
            System.out.println(
                "Modular multiplicative inverse is "
                + power(A, M - 2, M));
        }
    }
 
    static int power(int x, int y, int M)
    {
        if (y == 0)
            return 1;
        int p = power(x, y / 2, M) % M;
        p = (int)((p * (long)p) % M);
        if (y % 2 == 0)
            return p;
        else
            return (int)((x * (long)p) % M);
    }
 
    // Function to return gcd of a and b
    static int gcd(int a, int b)
    {
        if (a == 0)
            return b;
        return gcd(b % a, a);
    }
 
    // Driver Code
    public static void main(String args[])
    {
        int A = 3, M = 11;
 
        // Function call
        modInverse(A, M);
    }
}
 
// This code is contributed by Nikita Tiwari.


Python3




# Python3 program to find modular
# inverse of A under modulo M
 
# This program works only if M is prime.
 
# Function to find modular
# inverse of A under modulo M
# Assumption: M is prime
 
 
def modInverse(A, M):
 
    g = gcd(A, M)
 
    if (g != 1):
        print("Inverse doesn't exist")
 
    else:
 
        # If A and M are relatively prime,
        # then modulo inverse is A^(M-2) mod M
        print("Modular multiplicative inverse is ",
              power(A, M - 2, M))
 
# To compute x^y under modulo M
 
 
def power(x, y, M):
 
    if (y == 0):
        return 1
 
    p = power(x, y // 2, M) % M
    p = (p * p) % M
 
    if(y % 2 == 0):
        return p
    else:
        return ((x * p) % M)
 
# Function to return gcd of a and b
 
 
def gcd(a, b):
    if (a == 0):
        return b
 
    return gcd(b % a, a)
 
 
# Driver Code
if __name__ == "__main__":
    A = 3
    M = 11
 
    # Function call
    modInverse(A, M)
 
 
# This code is contributed by Nikita Tiwari.


C#




// C# program to find modular
// inverse of a under modulo M
// This program works only if
// M is prime.
using System;
class GFG {
 
    // Function to find modular
    // inverse of A under modulo
    // M Assumption: M is prime
    static void modInverse(int A, int M)
    {
        int g = gcd(A, M);
        if (g != 1)
            Console.Write("Inverse doesn't exist");
        else {
            // If A and M are relatively
            // prime, then modulo inverse
            // is A^(M-2) mod M
            Console.Write(
                "Modular multiplicative inverse is "
                + power(A, M - 2, M));
        }
    }
 
    // To compute x^y under
    // modulo M
    static int power(int x, int y, int M)
    {
        if (y == 0)
            return 1;
 
        int p = power(x, y / 2, M) % M;
        p = (p * p) % M;
 
        if (y % 2 == 0)
            return p;
        else
            return (x * p) % M;
    }
 
    // Function to return
    // gcd of a and b
    static int gcd(int a, int b)
    {
        if (a == 0)
            return b;
        return gcd(b % a, a);
    }
 
    // Driver Code
    public static void Main()
    {
        int A = 3, M = 11;
 
        // Function call
        modInverse(A, M);
    }
}
 
// This code is contributed by nitin mittal.


PHP




<?php
// PHP program to find modular
// inverse of A under modulo M
// This program works only if M
// is prime.
 
// Function to find modular
// inverse of A under modulo
// M Assumption: M is prime
function modInverse( $A, $M)
{
    $g = gcd($A, $M);
    if ($g != 1)
        echo "Inverse doesn't exist";
    else
    {
         
        // If A and M are relatively
        // prime, then modulo inverse
        // is A^(M-2) mod M
        echo "Modular multiplicative inverse is "
                        , power($A, $M - 2, $M);
    }
}
 
// To compute x^y under modulo m
function power( $x, $y, $M)
{
    if ($y == 0)
        return 1;
    $p = power($x, $y / 2, $M) % $M;
    $p = ($p * $p) % $M;
 
    return ($y % 2 == 0)? $p : ($x * $p) % $M;
}
 
// Function to return gcd of a and b
function gcd($a, $b)
{
    if ($a == 0)
        return $b;
    return gcd($b % $a, $a);
}
 
// Driver Code
$A = 3;
$M = 11;
 
// Function call
modInverse($A, $M);
     
// This code is contributed by anuj_67.
?>


Javascript




<script>
// Javascript program to find modular inverse of a under modulo m
// This program works only if m is prime.
 
// Function to find modular inverse of a under modulo m
// Assumption: m is prime
function modInverse(a, m)
{
    let g = gcd(a, m);
    if (g != 1)
        document.write("Inverse doesn't exist");
    else
    {
        // If a and m are relatively prime, then modulo
        // inverse is a^(m-2) mode m
        document.write("Modular multiplicative inverse is "
             + power(a, m - 2, m));
    }
}
 
// To compute x^y under modulo m
function power(x, y, m)
{
    if (y == 0)
        return 1;
    let p = power(x, parseInt(y / 2), m) % m;
    p = (p * p) % m;
 
    return (y % 2 == 0) ? p : (x * p) % m;
}
 
// Function to return gcd of a and b
function gcd(a, b)
{
    if (a == 0)
        return b;
    return gcd(b % a, a);
}
 
// Driver code
let a = 3, m = 11;
 
// Function call
modInverse(a, m);
 
// This code is contributed by subham348.
</script>


Output

Modular multiplicative inverse is 4

Time Complexity: O(log M)
Auxiliary Space: O(log M), because of the internal recursion stack.

Applications: 
Computation of the modular multiplicative inverse is an essential step in RSA public-key encryption method.

This article is contributed by Ankur. Please write comments if you find anything incorrect, or if you want to share more information about the topic discussed above

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments