Given a matrix of dimension M * N, where each cell in the matrix can have values 0, 1 or 2 which has the following meaning:
- 0: Empty cell
- 1: Cells have fresh oranges
- 2: Cells have rotten oranges
The task is to the minimum time required so that all the oranges become rotten. A rotten orange at index (i,j ) can rot other fresh oranges which are its neighbors (up, down, left, and right). If it is impossible to rot every orange then simply return -1.
Examples:
Input: arr[][C] = { {2, 1, 0, 2, 1}, {1, 0, 1, 2, 1}, {1, 0, 0, 2, 1}};
Output: 2
Explanation: At 0th time frame:
{2, 1, 0, 2, 1}
{1, 0, 1, 2, 1}
{1, 0, 0, 2, 1}
At 1st time frame:
{2, 2, 0, 2, 2}
{2, 0, 2, 2, 2}
{1, 0, 0, 2, 2}
At 2nd time frame:
{2, 2, 0, 2, 2}
{2, 0, 2, 2, 2}
{2, 0, 0, 2, 2}Input: arr[][C] = { {2, 1, 0, 2, 1}, {0, 0, 1, 2, 1}, {1, 0, 0, 2, 1}}
Output: -1
Explanation: At 0th time frame:
{2, 1, 0, 2, 1}
{0, 0, 1, 2, 1}
{1, 0, 0, 2, 1}
At 1st time frame:
{2, 2, 0, 2, 2}
{0, 0, 2, 2, 2}
{1, 0, 0, 2, 2}
At 2nd time frame:
{2, 2, 0, 2, 2}
{0, 0, 2, 2, 2}
{1, 0, 0, 2, 2}
The 1 at the bottom left corner of the matrix is never rotten.
Naive Approach:
Traverse through all oranges in multiple rounds. In every round, rot the oranges to the adjacent position of oranges that were rotten in the last round.
Follow the steps below to solve the problem:
- Create a variable no = 2 and changed = false.
- Run a loop until there is no cell of the matrix which is changed in an iteration.
- Run a nested loop and traverse the matrix:
- If the element of the matrix is equal to no then assign the adjacent elements to no + 1 if the adjacent element’s value is equal to 1, i.e. not rotten, and update changed to true.
- Traverse the matrix and check if there is any cell that is 1.
- If 1 is present return -1
- Else return no – 2.
Below is the implementation of the above approach.
C++14
// C++ program to rot all oranges when you can move // in all the four direction from a rotten orange #include <bits/stdc++.h> using namespace std; const int R = 3; const int C = 5; // Check if i, j is under the array limits of row and column bool issafe( int i, int j) { if (i >= 0 && i < R && j >= 0 && j < C) return true ; return false ; } int rotOranges( int v[R][C]) { bool changed = false ; int no = 2; while ( true ) { for ( int i = 0; i < R; i++) { for ( int j = 0; j < C; j++) { // Rot all other oranges present at // (i+1, j), (i, j-1), (i, j+1), (i-1, j) if (v[i][j] == no) { if (issafe(i + 1, j) && v[i + 1][j] == 1) { v[i + 1][j] = v[i][j] + 1; changed = true ; } if (issafe(i, j + 1) && v[i][j + 1] == 1) { v[i][j + 1] = v[i][j] + 1; changed = true ; } if (issafe(i - 1, j) && v[i - 1][j] == 1) { v[i - 1][j] = v[i][j] + 1; changed = true ; } if (issafe(i, j - 1) && v[i][j - 1] == 1) { v[i][j - 1] = v[i][j] + 1; changed = true ; } } } } // if no rotten orange found it means all // oranges rottened now if (!changed) break ; changed = false ; no++; } for ( int i = 0; i < R; i++) { for ( int j = 0; j < C; j++) { // if any orange is found to be // not rotten then ans is not possible if (v[i][j] == 1) return -1; } } // Because initial value for a rotten // orange was 2 return no - 2; } // Driver function int main() { int v[R][C] = { { 2, 1, 0, 2, 1 }, { 1, 0, 1, 2, 1 }, { 1, 0, 0, 2, 1 } }; cout << "Max time incurred: " << rotOranges(v); return 0; } |
Java
// Java program to rot all oranges when you can move // in all the four direction from a rotten orange class GFG { static int R = 3 ; static int C = 5 ; // Check if i, j is under the array // limits of row and column static boolean issafe( int i, int j) { if (i >= 0 && i < R && j >= 0 && j < C) return true ; return false ; } static int rotOranges( int v[][]) { boolean changed = false ; int no = 2 ; while ( true ) { for ( int i = 0 ; i < R; i++) { for ( int j = 0 ; j < C; j++) { // Rot all other oranges present at // (i+1, j), (i, j-1), (i, j+1), (i-1, // j) if (v[i][j] == no) { if (issafe(i + 1 , j) && v[i + 1 ][j] == 1 ) { v[i + 1 ][j] = v[i][j] + 1 ; changed = true ; } if (issafe(i, j + 1 ) && v[i][j + 1 ] == 1 ) { v[i][j + 1 ] = v[i][j] + 1 ; changed = true ; } if (issafe(i - 1 , j) && v[i - 1 ][j] == 1 ) { v[i - 1 ][j] = v[i][j] + 1 ; changed = true ; } if (issafe(i, j - 1 ) && v[i][j - 1 ] == 1 ) { v[i][j - 1 ] = v[i][j] + 1 ; changed = true ; } } } } // If no rotten orange found it means all // oranges rottened now if (!changed) break ; changed = false ; no++; } for ( int i = 0 ; i < R; i++) { for ( int j = 0 ; j < C; j++) { // If any orange is found to be // not rotten then ans is not possible if (v[i][j] == 1 ) return - 1 ; } } // Because initial value for a rotten // orange was 2 return no - 2 ; } // Driver Code public static void main(String[] args) { int v[][] = { { 2 , 1 , 0 , 2 , 1 }, { 1 , 0 , 1 , 2 , 1 }, { 1 , 0 , 0 , 2 , 1 } }; System.out.println( "Max time incurred: " + rotOranges(v)); } } // This code is contributed by divyesh072019 |
Python3
# Python3 program to rot all # oranges when you can move # in all the four direction # from a rotten orange R = 3 C = 5 # Check if i, j is under the # array limits of row and # column def issafe(i, j): if (i > = 0 and i < R and j > = 0 and j < C): return True return False def rotOranges(v): changed = False no = 2 while ( True ): for i in range (R): for j in range (C): # Rot all other oranges # present at (i+1, j), # (i, j-1), (i, j+1), # (i-1, j) if (v[i][j] = = no): if (issafe(i + 1 , j) and v[i + 1 ][j] = = 1 ): v[i + 1 ][j] = v[i][j] + 1 changed = True if (issafe(i, j + 1 ) and v[i][j + 1 ] = = 1 ): v[i][j + 1 ] = v[i][j] + 1 changed = True if (issafe(i - 1 , j) and v[i - 1 ][j] = = 1 ): v[i - 1 ][j] = v[i][j] + 1 changed = True if (issafe(i, j - 1 ) and v[i][j - 1 ] = = 1 ): v[i][j - 1 ] = v[i][j] + 1 changed = True # if no rotten orange found # it means all oranges rottened # now if ( not changed): break changed = False no + = 1 for i in range (R): for j in range (C): # if any orange is found # to be not rotten then # ans is not possible if (v[i][j] = = 1 ): return - 1 # Because initial value # for a rotten orange was 2 return no - 2 # Driver function if __name__ = = "__main__" : v = [[ 2 , 1 , 0 , 2 , 1 ], [ 1 , 0 , 1 , 2 , 1 ], [ 1 , 0 , 0 , 2 , 1 ]] print ( "Max time incurred: " , rotOranges(v)) # This code is contributed by Chitranayal |
C#
// C# program to rot all oranges when you can move // in all the four direction from a rotten orange using System; class GFG { static int R = 3; static int C = 5; // Check if i, j is under the array // limits of row and column static bool issafe( int i, int j) { if (i >= 0 && i < R && j >= 0 && j < C) return true ; return false ; } static int rotOranges( int [, ] v) { bool changed = false ; int no = 2; while ( true ) { for ( int i = 0; i < R; i++) { for ( int j = 0; j < C; j++) { // Rot all other oranges present at // (i+1, j), (i, j-1), (i, j+1), (i-1, // j) if (v[i, j] == no) { if (issafe(i + 1, j) && v[i + 1, j] == 1) { v[i + 1, j] = v[i, j] + 1; changed = true ; } if (issafe(i, j + 1) && v[i, j + 1] == 1) { v[i, j + 1] = v[i, j] + 1; changed = true ; } if (issafe(i - 1, j) && v[i - 1, j] == 1) { v[i - 1, j] = v[i, j] + 1; changed = true ; } if (issafe(i, j - 1) && v[i, j - 1] == 1) { v[i, j - 1] = v[i, j] + 1; changed = true ; } } } } // if no rotten orange found it means all // oranges rottened now if (!changed) break ; changed = false ; no++; } for ( int i = 0; i < R; i++) { for ( int j = 0; j < C; j++) { // if any orange is found to be // not rotten then ans is not possible if (v[i, j] == 1) return -1; } } // Because initial value for a rotten // orange was 2 return no - 2; } static void Main() { int [, ] v = { { 2, 1, 0, 2, 1 }, { 1, 0, 1, 2, 1 }, { 1, 0, 0, 2, 1 } }; Console.Write( "Max time incurred: " + rotOranges(v)); } } // This code is contributed by divyeshrabadiya07 |
Javascript
<script> // Javascript program to rot all oranges when you can move // in all the four direction from a rotten orange let R = 3; let C = 5; // Check if i, j is under the array limits of row and column function issafe(i, j) { if (i >= 0 && i < R && j >= 0 && j < C) return true ; return false ; } function rotOranges(v) { let changed = false ; let no = 2; while ( true ) { for (let i = 0; i < R; i++) { for (let j = 0; j < C; j++) { // Rot all other oranges present at // (i+1, j), (i, j-1), (i, j+1), (i-1, j) if (v[i][j] == no) { if (issafe(i + 1, j) && v[i + 1][j] == 1) { v[i + 1][j] = v[i][j] + 1; changed = true ; } if (issafe(i, j + 1) && v[i][j + 1] == 1) { v[i][j + 1] = v[i][j] + 1; changed = true ; } if (issafe(i - 1, j) && v[i - 1][j] == 1) { v[i - 1][j] = v[i][j] + 1; changed = true ; } if (issafe(i, j - 1) && v[i][j - 1] == 1) { v[i][j - 1] = v[i][j] + 1; changed = true ; } } } } // if no rotten orange found it means all // oranges rottened now if (!changed) break ; changed = false ; no++; } for (let i = 0; i < R; i++) { for (let j = 0; j < C; j++) { // if any orange is found to be // not rotten then ans is not possible if (v[i][j] == 1) return -1; } } // Because initial value for a rotten // orange was 2 return no - 2; } // Driver code let v = [ [ 2, 1, 0, 2, 1 ], [ 1, 0, 1, 2, 1 ], [ 1, 0, 0, 2, 1 ] ]; document.write( "Max time incurred: " + rotOranges(v)); // This code is contributed by mukesh07. </script> |
Max time incurred: 2
Time Complexity: O((R*C) * (R *C)),
- The matrix needs to be traversed again and again until there is no change in the matrix, that can happen max(R *C)/2 times.
- So time complexity is O((R * C) * (R *C)).
Auxiliary Space: O(1), No extra space is required.
Minimum time required to rot all oranges using Breadth First Search:
The idea is to use Breadth First Search. The condition of oranges getting rotten is when they come in contact with other rotten oranges. This is similar to a breadth-first search where the graph is divided into layers or circles and the search is done from lower or closer layers to deeper or higher layers.
In the previous approach, the idea was based on BFS but the implementation was poor and inefficient. To find the elements whose values are no the whole matrix had to be traversed. So time can be reduced by using this efficient approach of BFS.
Follow the steps below to solve the problem:
- Create an empty queue Q.
- Find all rotten oranges and enqueue them to Q. Also, enqueue a delimiter to indicate the beginning of the next time frame.
- Run a loop While Q is not empty and do the following while the delimiter in Q is not reached
- Dequeue an orange from the queue, and rot all adjacent oranges.
- While rotting the adjacent, make sure that the time frame is incremented only once. And the time frame is not incremented if there are no adjacent oranges.
- Dequeue the old delimiter and enqueue a new delimiter. The oranges rotten in the previous time frame lie between the two delimiters.
- Return the last time frame.
Illustration:
Step 0: At time t=0, insert all the rotten oranges into the queue, these will act as source for multisource BFS.
Step 1: At time t=1, all the fresh oranges which are adjacent to rotten oranges all made rotten and inserted into the queue.
Step 2: At time t=2, the last fresh orange is made rotten and inserted into the queue.
Step 3: After the last fresh orange is made rotten, no new orange will be added to queue and queue will become empty. Since the last fresh orange became rotten at time t=2, minimum time required to rot all oranges will be 2.
Below is the implementation of the above approach.
C++
// C++ program to find minimum time required to make all // oranges rotten #include <bits/stdc++.h> #define R 3 #define C 5 using namespace std; // This function finds if it is possible to rot all oranges // or not. If possible, then it returns minimum time // required to rot all, otherwise returns -1 int rotOranges(vector<vector< int > >& grid) { int n = grid.size(); // row size int m = grid[0].size(); // column size // delrow and delcol are used to traverse in // up,right,bottom and left respectively. int delrow[] = { -1, 0, 1, 0 }; int delcol[] = { 0, 1, 0, -1 }; // visited matrix to keep track of the visited cell. int vis[n][m]; // queue stores rowIndex,colIndex and time taken to rot // respectively. queue<pair<pair< int , int >, int > > q; // counter to keep track of fresh cells. int cntfresh = 0; for ( int i = 0; i < n; i++) { for ( int j = 0; j < m; j++) { if (grid[i][j] == 2) { q.push({ { i, j }, 0 }); // already rotten hence 0 // time to rot. vis[i][j] = 2; // visited cell marked as rotten. } else { vis[i][j] = 0; // unvisited } if (grid[i][j] == 1) cntfresh++; // maintaining count for fresh // oranges. } } int cnt = 0, tm = 0; while (!q.empty()) { int row = q.front().first.first; // row index int col = q.front().first.second; // col index int t = q.front().second; // time an orange at a // cell takes to rot. q.pop(); tm = max( tm , t); // checking for adjacent nodes in 4 directions. for ( int i = 0; i < 4; i++) { int nrow = row + delrow[i]; int ncol = col + delcol[i]; // checking the validity of a node and also // vis[nrow][ncol] !=2 if (nrow >= 0 && nrow < n && ncol >= 0 && ncol < m && grid[nrow][ncol] == 1 && vis[nrow][ncol] != 2) { vis[nrow][ncol] = 2; // adj orange is rotten q.push({ { nrow, ncol }, t + 1 }); // incrementing time for // that orange by 1 cnt++; } } } return (cnt == cntfresh) ? tm : -1; } // Driver program int main() { vector<vector< int > > arr = { { 0, 1, 2 }, { 0, 1, 2 }, { 2, 1, 1 } }; int ans = rotOranges(arr); if (ans == -1) cout << "All oranges cannot rotn" ; else cout << "Time required for all oranges to rot => " << ans << endl; return 0; } |
Java
// Java program to find minimum time required to make all // oranges rotten import java.util.LinkedList; import java.util.Queue; public class RotOrange { public final static int R = 3 ; public final static int C = 5 ; // structure for storing coordinates of the cell static class Ele { int x = 0 ; int y = 0 ; Ele( int x, int y) { this .x = x; this .y = y; } } // function to check whether a cell is valid / invalid static boolean isValid( int i, int j) { return (i >= 0 && j >= 0 && i < R && j < C); } // Function to check whether the cell is delimiter // which is (-1, -1) static boolean isDelim(Ele temp) { return (temp.x == - 1 && temp.y == - 1 ); } // Function to check whether there is still a fresh // orange remaining static boolean checkAll( int arr[][]) { for ( int i = 0 ; i < R; i++) for ( int j = 0 ; j < C; j++) if (arr[i][j] == 1 ) return true ; return false ; } // This function finds if it is possible to rot all // oranges or not. If possible, then it returns minimum // time required to rot all, otherwise returns -1 static int rotOranges( int arr[][]) { // Create a queue of cells Queue<Ele> Q = new LinkedList<>(); Ele temp; int ans = 0 ; // Store all the cells having rotten orange in first // time frame for ( int i = 0 ; i < R; i++) for ( int j = 0 ; j < C; j++) if (arr[i][j] == 2 ) Q.add( new Ele(i, j)); // Separate these rotten oranges from the oranges // which will rotten due the oranges in first time // frame using delimiter which is (-1, -1) Q.add( new Ele(- 1 , - 1 )); // Process the grid while there are rotten oranges // in the Queue while (!Q.isEmpty()) { // This flag is used to determine whether even a // single fresh orange gets rotten due to rotten // oranges in the current time frame so we can // increase the count of the required time. boolean flag = false ; // Process all the rotten oranges in current // time frame. while (!isDelim(Q.peek())) { temp = Q.peek(); // Check right adjacent cell that if it can // be rotten if (isValid(temp.x + 1 , temp.y) && arr[temp.x + 1 ][temp.y] == 1 ) { if (!flag) { // if this is the first orange to // get rotten, increase count and // set the flag. ans++; flag = true ; } // Make the orange rotten arr[temp.x + 1 ][temp.y] = 2 ; // push the adjacent orange to Queue temp.x++; Q.add( new Ele(temp.x, temp.y)); // Move back to current cell temp.x--; } // Check left adjacent cell that if it can // be rotten if (isValid(temp.x - 1 , temp.y) && arr[temp.x - 1 ][temp.y] == 1 ) { if (!flag) { ans++; flag = true ; } arr[temp.x - 1 ][temp.y] = 2 ; temp.x--; Q.add( new Ele( temp.x, temp.y)); // push this cell to Queue temp.x++; } // Check top adjacent cell that if it can be // rotten if (isValid(temp.x, temp.y + 1 ) && arr[temp.x][temp.y + 1 ] == 1 ) { if (!flag) { ans++; flag = true ; } arr[temp.x][temp.y + 1 ] = 2 ; temp.y++; Q.add( new Ele( temp.x, temp.y)); // Push this cell to Queue temp.y--; } // Check bottom adjacent cell if it can be // rotten if (isValid(temp.x, temp.y - 1 ) && arr[temp.x][temp.y - 1 ] == 1 ) { if (!flag) { ans++; flag = true ; } arr[temp.x][temp.y - 1 ] = 2 ; temp.y--; Q.add( new Ele( temp.x, temp.y)); // push this cell to Queue } Q.remove(); } // Pop the delimiter Q.remove(); // If oranges were rotten in current frame than // separate the rotten oranges using delimiter // for the next frame for processing. if (!Q.isEmpty()) { Q.add( new Ele(- 1 , - 1 )); } // If Queue was empty than no rotten oranges // left to process so exit } // Return -1 if all arranges could not rot, // otherwise ans return (checkAll(arr)) ? - 1 : ans; } // Driver program public static void main(String[] args) { int arr[][] = { { 2 , 1 , 0 , 2 , 1 }, { 1 , 0 , 1 , 2 , 1 }, { 1 , 0 , 0 , 2 , 1 } }; int ans = rotOranges(arr); if (ans == - 1 ) System.out.println( "All oranges cannot rot" ); else System.out.println( "Time required for all oranges to rot => " + ans); } } // This code is contributed by Sumit Ghosh |
Python3
# Python3 program to find minimum time required to make all # oranges rotten from collections import deque # function to check whether a cell is valid / invalid def isvalid(i, j): return (i > = 0 and j > = 0 and i < 3 and j < 5 ) # Function to check whether the cell is delimiter # which is (-1, -1) def isdelim(temp): return (temp[ 0 ] = = - 1 and temp[ 1 ] = = - 1 ) # Function to check whether there is still a fresh # orange remaining def checkall(arr): for i in range ( 3 ): for j in range ( 5 ): if (arr[i][j] = = 1 ): return True return False # This function finds if it is # possible to rot all oranges or not. # If possible, then it returns # minimum time required to rot all, # otherwise returns -1 def rotOranges(arr): # Create a queue of cells Q = deque() temp = [ 0 , 0 ] ans = 1 # Store all the cells having # rotten orange in first time frame for i in range ( 3 ): for j in range ( 5 ): if (arr[i][j] = = 2 ): temp[ 0 ] = i temp[ 1 ] = j Q.append([i, j]) # Separate these rotten oranges # from the oranges which will rotten # due the oranges in first time # frame using delimiter which is (-1, -1) temp[ 0 ] = - 1 temp[ 1 ] = - 1 Q.append([ - 1 , - 1 ]) # print(Q) # Process the grid while there are # rotten oranges in the Queue while False : # This flag is used to determine # whether even a single fresh # orange gets rotten due to rotten # oranges in current time # frame so we can increase # the count of the required time. flag = False print ( len (Q)) # Process all the rotten # oranges in current time frame. while not isdelim(Q[ 0 ]): temp = Q[ 0 ] print ( len (Q)) # Check right adjacent cell that if it can be rotten if (isvalid(temp[ 0 ] + 1 , temp[ 1 ]) and arr[temp[ 0 ] + 1 ][temp[ 1 ]] = = 1 ): # if this is the first orange to get rotten, increase # count and set the flag. if ( not flag): ans, flag = ans + 1 , True # Make the orange rotten arr[temp[ 0 ] + 1 ][temp[ 1 ]] = 2 # append the adjacent orange to Queue temp[ 0 ] + = 1 Q.append(temp) temp[ 0 ] - = 1 # Move back to current cell # Check left adjacent cell that if it can be rotten if (isvalid(temp[ 0 ] - 1 , temp[ 1 ]) and arr[temp[ 0 ] - 1 ][temp[ 1 ]] = = 1 ): if ( not flag): ans, flag = ans + 1 , True arr[temp[ 0 ] - 1 ][temp[ 1 ]] = 2 temp[ 0 ] - = 1 Q.append(temp) # append this cell to Queue temp[ 0 ] + = 1 # Check top adjacent cell that if it can be rotten if (isvalid(temp[ 0 ], temp[ 1 ] + 1 ) and arr[temp[ 0 ]][temp[ 1 ] + 1 ] = = 1 ): if ( not flag): ans, flag = ans + 1 , True arr[temp[ 0 ]][temp[ 1 ] + 1 ] = 2 temp[ 1 ] + = 1 Q.append(temp) # Push this cell to Queue temp[ 1 ] - = 1 # Check bottom adjacent cell if it can be rotten if (isvalid(temp[ 0 ], temp[ 1 ] - 1 ) and arr[temp[ 0 ]][temp[ 1 ] - 1 ] = = 1 ): if ( not flag): ans, flag = ans + 1 , True arr[temp[ 0 ]][temp[ 1 ] - 1 ] = 2 temp[ 1 ] - = 1 Q.append(temp) # append this cell to Queue Q.popleft() # Pop the delimiter Q.popleft() # If oranges were rotten in # current frame than separate the # rotten oranges using delimiter # for the next frame for processing. if ( len (Q) = = 0 ): temp[ 0 ] = - 1 temp[ 1 ] = - 1 Q.append(temp) # If Queue was empty than no rotten oranges left to process so exit # Return -1 if all arranges could not rot, otherwise return ans. return ans + 1 if (checkall(arr)) else - 1 # Driver program if __name__ = = '__main__' : arr = [[ 2 , 1 , 0 , 2 , 1 ], [ 1 , 0 , 1 , 2 , 1 ], [ 1 , 0 , 0 , 2 , 1 ]] ans = rotOranges(arr) if (ans = = - 1 ): print ( "All oranges cannot rotn" ) else : print ( "Time required for all oranges to rot => " , ans) # This code is contributed by mohit kumar 29 |
C#
// C# program to find minimum time // required to make all oranges rotten using System; using System.Collections.Generic; class GFG { public const int R = 3; public const int C = 5; // structure for storing // coordinates of the cell public class Ele { public int x = 0; public int y = 0; public Ele( int x, int y) { this .x = x; this .y = y; } } // function to check whether a cell // is valid / invalid public static bool isValid( int i, int j) { return (i >= 0 && j >= 0 && i < R && j < C); } // Function to check whether the cell // is delimiter which is (-1, -1) public static bool isDelim(Ele temp) { return (temp.x == -1 && temp.y == -1); } // Function to check whether there // is still a fresh orange remaining public static bool checkAll( int [][] arr) { for ( int i = 0; i < R; i++) { for ( int j = 0; j < C; j++) { if (arr[i][j] == 1) { return true ; } } } return false ; } // This function finds if it is possible // to rot all oranges or not. If possible, // then it returns minimum time required // to rot all, otherwise returns -1 public static int rotOranges( int [][] arr) { // Create a queue of cells LinkedList<Ele> Q = new LinkedList<Ele>(); Ele temp; int ans = 0; // Store all the cells having rotten // orange in first time frame for ( int i = 0; i < R; i++) { for ( int j = 0; j < C; j++) { if (arr[i][j] == 2) { Q.AddLast( new Ele(i, j)); } } } // Separate these rotten oranges from // the oranges which will rotten // due the oranges in first time frame // using delimiter which is (-1, -1) Q.AddLast( new Ele(-1, -1)); // Process the grid while there are // rotten oranges in the Queue while (Q.Count > 0) { // This flag is used to determine // whether even a single fresh // orange gets rotten due to rotten // oranges in current time frame so // we can increase the count of the // required time. bool flag = false ; // Process all the rotten oranges // in current time frame. while (!isDelim(Q.First.Value)) { temp = Q.First.Value; // Check right adjacent cell that // if it can be rotten if (isValid(temp.x + 1, temp.y) && arr[temp.x + 1][temp.y] == 1) { if (!flag) { // if this is the first orange // to get rotten, increase // count and set the flag. ans++; flag = true ; } // Make the orange rotten arr[temp.x + 1][temp.y] = 2; // push the adjacent orange to Queue temp.x++; Q.AddLast( new Ele(temp.x, temp.y)); // Move back to current cell temp.x--; } // Check left adjacent cell that // if it can be rotten if (isValid(temp.x - 1, temp.y) && arr[temp.x - 1][temp.y] == 1) { if (!flag) { ans++; flag = true ; } arr[temp.x - 1][temp.y] = 2; temp.x--; // push this cell to Queue Q.AddLast( new Ele(temp.x, temp.y)); temp.x++; } // Check top adjacent cell that // if it can be rotten if (isValid(temp.x, temp.y + 1) && arr[temp.x][temp.y + 1] == 1) { if (!flag) { ans++; flag = true ; } arr[temp.x][temp.y + 1] = 2; temp.y++; // Push this cell to Queue Q.AddLast( new Ele(temp.x, temp.y)); temp.y--; } // Check bottom adjacent cell // if it can be rotten if (isValid(temp.x, temp.y - 1) && arr[temp.x][temp.y - 1] == 1) { if (!flag) { ans++; flag = true ; } arr[temp.x][temp.y - 1] = 2; temp.y--; // push this cell to Queue Q.AddLast( new Ele(temp.x, temp.y)); } Q.RemoveFirst(); } // Pop the delimiter Q.RemoveFirst(); // If oranges were rotten in current // frame than separate the rotten // oranges using delimiter for the // next frame for processing. if (Q.Count > 0) { Q.AddLast( new Ele(-1, -1)); } // If Queue was empty than no rotten // oranges left to process so exit } // Return -1 if all arranges could // not rot, otherwise ans return (checkAll(arr)) ? -1 : ans; } // Driver Code public static void Main( string [] args) { int [][] arr = new int [][] { new int [] { 2, 1, 0, 2, 1 }, new int [] { 1, 0, 1, 2, 1 }, new int [] { 1, 0, 0, 2, 1 } }; int ans = rotOranges(arr); if (ans == -1) { Console.WriteLine( "All oranges cannot rot" ); } else { Console.WriteLine( "Time required for all " + "oranges to rot => " + ans); } } } // This code is contributed by Shrikant13 |
Javascript
// JS program to find minimum time required to make all // oranges rotten // function to check whether a cell is valid / invalid function isvalid(i, j) { return (i >= 0 && j >= 0 && i < 3 && j < 5) } // Function to check whether the cell is delimiter // which is (-1, -1) function isdelim(temp) { return (temp[0] == -1 && temp[1] == -1) } // Function to check whether there is still a fresh // orange remaining function checkall(arr) { for ( var i = 0; i < 3; i++) for ( var j = 0; j < 5; j++) if (arr[i][j] == 1) return true return false } // This function finds if it is // possible to rot all oranges or not. // If possible, then it returns // minimum time required to rot all, // otherwise returns -1 function rotOranges(arr) { // Create a queue of cells let Q = [] let temp = [0, 0] let ans = 1 // Store all the cells having // rotten orange in first time frame for ( var i = 0; i < 3; i++) { for ( var j = 0; j < 5; j++) { if (arr[i][j] == 2) { temp[0] = i temp[1] = j Q.push([i, j]) } } } // Separate these rotten oranges // from the oranges which will rotten // due the oranges in first time // frame using delimiter which is (-1, -1) temp[0] = -1 temp[1] = -1 Q.push([-1, -1]) // print(Q) // Process the grid while there are // rotten oranges in the Queue while ( false ) { // This flag is used to determine // whether even a single fresh // orange gets rotten due to rotten // oranges in current time // frame so we can increase // the count of the required time. flag = false console.log(Q.length) // Process all the rotten // oranges in current time frame. while (!isdelim(Q[0])) { temp = Q[0] console.log(Q.length) // Check right adjacent cell that if it can be rotten if (isvalid(temp[0] + 1, temp[1]) && arr[temp[0] + 1][temp[1]] == 1) { // if this is the first orange to get rotten, increase // count && set the flag. if (!flag) { ans = ans + 1 flag = true } // Make the orange rotten arr[temp[0] + 1][temp[1]] = 2 // append the adjacent orange to Queue temp[0] += 1 Q.push(temp) temp[0] -= 1 // Move back to current cell } // Check left adjacent cell that if it can be rotten if (isvalid(temp[0] - 1, temp[1]) && arr[temp[0] - 1][temp[1]] == 1) { if (!flag) { ans = ans + 1 flag = true } arr[temp[0] - 1][temp[1]] = 2 temp[0] -= 1 Q.push(temp) // append this cell to Queue temp[0] += 1 } // Check top adjacent cell that if it can be rotten if (isvalid(temp[0], temp[1] + 1) && arr[temp[0]][temp[1] + 1] == 1) { if (!flag) { ans++; flag = true ; } arr[temp[0]][temp[1] + 1] = 2 temp[1] += 1 Q.push(temp) // Push this cell to Queue temp[1] -= 1 } // Check bottom adjacent cell if it can be rotten if (isvalid(temp[0], temp[1] - 1) && arr[temp[0]][temp[1] - 1] == 1) { if (!flag) { ans ++; flag = true ; } arr[temp[0]][temp[1] - 1] = 2 temp[1] -= 1 Q.push(temp) // append this cell to Queue } Q.shift() } // Pop the delimiter Q.shift() // If oranges were rotten in // current frame than separate the // rotten oranges using delimiter // for the next frame for processing. if (Q.length == 0) { temp[0] = -1 temp[1] = -1 Q.push(temp) } // If Queue was empty than no rotten oranges left to process so exit } // Return -1 if all arranges could not rot, otherwise return ans. if (checkall(arr)) return ans + 1 return -1 } // Driver program let arr = [[2, 1, 0, 2, 1], [1, 0, 1, 2, 1], [1, 0, 0, 2, 1]] let ans = rotOranges(arr) if (ans == -1) console.log( "All oranges cannot rotn" ) else console.log( "Time required for all oranges to rot => " , ans) // This code is contributed by phasing17 |
Time required for all oranges to rot => 1
Time Complexity: O( R *C), Each element of the matrix can be inserted into the queue only once so the upper bound of iteration is O(R*C)
Auxiliary Space: O(R*C), To store the elements in a queue.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!