Given an expression with only ‘}’ and ‘{‘. The expression may not be balanced. Find minimum number of bracket reversals to make the expression balanced.
Examples:
Input: exp = "}{"
Output: 2
We need to change '}' to '{' and '{' to
'}' so that the expression becomes balanced,
the balanced expression is '{}'
Input: exp = "{{{"
Output: Can't be made balanced using reversals
Input: exp = "{{{{"
Output: 2
Input: exp = "{{{{}}"
Output: 1
Input: exp = "}{{}}{{{"
Output: 3
One simple observation is, the string can be balanced only if total number of brackets is even (there must be equal no of ‘{‘ and ‘}’)
A Naive Solution is to consider every bracket and recursively count number of reversals by taking two cases (i) keeping the bracket as it is (ii) reversing the bracket. If we get a balanced expression, we update result if number of steps followed for reaching here is smaller than the minimum so far.
Steps to implement
- Check for the length of the given expression, if it is odd then return -1
- If it is even then call a recursive function
- That recursive function once leaves a bracket as it is and once reverses a bracket
- After each recursive call, we will check whether the modified string is balanced or not
- If the modified string is balanced and the number of reversals to reach this string is minimum from all the answers found till now then keep this answer stored somewhere
- In the function for checking whether the string is balanced or not, we will initially keep count=0.
- After that traverse the string and if we got ‘{‘ then increment the count else decrement the count
- If at any point count becomes negative then this means there are more Closing brackets than opening ones. Hence string is not balanced
- At last, if the count is not equal to 0 then that means there are more opening brackets than closing ones. Hence string is not balanced
- If we never found that there are more Closing brackets than opening ones or there are more opening brackets than closing ones then the string is balanced
Code-
C++
// C++ program to find minimum number of // reversals required to balance an expression #include <bits/stdc++.h> using namespace std; //Function to check that expression is balanced or not bool isBalanced(string expr) { // Initialising Variables bool flag = true ; int count = 0; // Traversing the Expression for ( int i = 0; i < expr.length(); i++) { if (expr[i] == '{' ) { count++; } else { // It is a closing bracket count--; } if (count < 0) { // This means there are more Closing brackets // than opening ones flag = false ; break ; } } // If count is not zero, // It means there are // more opening brackets if (count != 0) { flag = false ; } return flag; } //Recursive Function for finding //Number of reversals void recur(string expr, int n, int ind, int change, int &ans){ //When generated expression is balanced if (isBalanced(expr)){ans=min(ans,change);} //When we covered whole string if (ind==n){ return ;} //Keep bracket as it is recur(expr,n,ind+1,change,ans); //Reverse the bracket if (expr[ind]== '{' ){expr[ind]= '}' ;} else {expr[ind]= '{' ;} recur(expr,n,ind+1,change+1,ans); } // Returns count of minimum reversals for making // expr balanced. Returns -1 if expr cannot be // balanced. int countMinReversals(string expr) { //Length of expression int n = expr.length(); //To store answer int ans=INT_MAX; //When total number of brackets are odd if (n%2==1){ return -1; } else { //Function call for finding answer recur(expr,n,0,0,ans); return ans; } } // Driver program to test above function int main() { string expr = "}}{{" ; cout << countMinReversals(expr); return 0; } |
Python
# Function to check if the expression is balanced or not def isBalanced(expr): # Initializing variables flag = True count = 0 # Traversing the expression for char in expr: if char = = '{' : count + = 1 else : # It is a closing bracket count - = 1 if count < 0 : # This means there are more closing brackets than opening ones flag = False break # If count is not zero, it means there are more opening brackets if count ! = 0 : flag = False return flag # Recursive function for finding the number of reversals def recur(expr, n, ind, change, ans): # When we've covered the whole string, check if it's balanced if ind = = n: if isBalanced(expr): ans[ 0 ] = min (ans[ 0 ], change) return # Keep the bracket as it is recur(expr, n, ind + 1 , change, ans) # Reverse the bracket if expr[ind] = = '{' : expr = expr[:ind] + '}' + expr[ind + 1 :] else : expr = expr[:ind] + '{' + expr[ind + 1 :] recur(expr, n, ind + 1 , change + 1 , ans) # Returns the count of minimum reversals for making expr balanced. # Returns -1 if expr cannot be balanced. def countMinReversals(expr): # Length of the expression n = len (expr) # To store the answer ans = [ float ( 'inf' )] # When the total number of brackets is odd if n % 2 = = 1 : return - 1 else : # Function call for finding the answer recur(expr, n, 0 , 0 , ans) if ans[ 0 ] = = float ( 'inf' ): return - 1 return ans[ 0 ] # Driver program to test the function if __name__ = = "__main__" : expr = "}}{{" result = countMinReversals(expr) print (result) |
C#
using System; class Program { // Function to check if the expression is balanced or not static bool IsBalanced( string expr) { bool flag = true ; int count = 0; // Traversing the expression for ( int i = 0; i < expr.Length; i++) { if (expr[i] == '{' ) { count++; } else { // It is a closing bracket count--; } if (count < 0) { // This means there are more closing brackets than opening ones flag = false ; break ; } } // If count is not zero, it means there are more opening brackets if (count != 0) { flag = false ; } return flag; } // Recursive function for finding the number of reversals static void Recur( string expr, int n, int ind, int change, ref int ans) { // When the generated expression is balanced if (IsBalanced(expr)) { ans = Math.Min(ans, change); } // When we've covered the whole string if (ind == n) { return ; } // Keep the bracket as it is Recur(expr, n, ind + 1, change, ref ans); // Reverse the bracket if (expr[ind] == '{' ) { expr = expr.Remove(ind, 1).Insert(ind, "}" ); } else { expr = expr.Remove(ind, 1).Insert(ind, "{" ); } Recur(expr, n, ind + 1, change + 1, ref ans); } // Returns the count of minimum reversals for making the expression balanced. // Returns -1 if the expression cannot be balanced. static int CountMinReversals( string expr) { int n = expr.Length; int ans = int .MaxValue; // When the total number of brackets is odd if (n % 2 == 1) { return -1; } else { // Function call for finding the answer Recur(expr, n, 0, 0, ref ans); return ans; } } // Driver program to test the above function static void Main() { string expr = "}}{{" ; Console.WriteLine(CountMinReversals(expr)); } } |
Output-
2
Time complexity: O(2n*n), because O(2n) in recursive function and O(n) in checking the expression generated after every recursive call is balanced or not
Space Complexity: O(n), because of the Auxillary space of recursion
An Efficient Solution can solve this problem in O(n) time. The idea is to first remove all balanced part of expression. For example, convert “}{{}}{{{” to “}{{{” by removing highlighted part. If we take a closer look, we can notice that, after removing balanced part, we always end up with an expression of the form }}…}{{…{, an expression that contains 0 or more number of closing brackets followed by 0 or more numbers of opening brackets.
How many minimum reversals are required for an expression of the form “}}..}{{..{” ?. Let m be the total number of closing brackets and n be the number of opening brackets. We need ⌈m/2⌉ + ⌈n/2⌉ reversals. For example }}}}{{ requires 2+1 reversals.
Below is implementation of above idea:
C++14
// C++ program to find minimum number of // reversals required to balance an expression #include <bits/stdc++.h> using namespace std; // Returns count of minimum reversals for making // expr balanced. Returns -1 if expr cannot be // balanced. int countMinReversals(string expr) { int len = expr.length(); // length of expression must be even to make // it balanced by using reversals. if (len % 2) return -1; // After this loop, stack contains unbalanced // part of expression, i.e., expression of the // form "}}..}{{..{" stack< char > s; for ( int i = 0; i < len; i++) { if (expr[i] == '}' && !s.empty()) { if (s.top() == '{' ) s.pop(); else s.push(expr[i]); } else s.push(expr[i]); } // Length of the reduced expression // red_len = (m+n) int red_len = s.size(); // count opening brackets at the end of // stack int n = 0; while (!s.empty() && s.top() == '{' ) { s.pop(); n++; } // return ceil(m/2) + ceil(n/2) which is // actually equal to (m+n)/2 + n%2 when // m+n is even. return (red_len / 2 + n % 2); } // Driver program to test above function int main() { string expr = "}}{{" ; cout << countMinReversals(expr); return 0; } |
Java
// Java Code to count minimum reversal for // making an expression balanced. import java.util.Stack; public class GFG { // Method count minimum reversal for // making an expression balanced. // Returns -1 if expression cannot be balanced static int countMinReversals(String expr) { int len = expr.length(); // length of expression must be even to make // it balanced by using reversals. if (len % 2 != 0 ) return - 1 ; // After this loop, stack contains unbalanced // part of expression, i.e., expression of the // form "}}..}{{..{" Stack<Character> s = new Stack<>(); for ( int i = 0 ; i < len; i++) { char c = expr.charAt(i); if (c == '}' && !s.empty()) { if (s.peek() == '{' ) s.pop(); else s.push(c); } else s.push(c); } // Length of the reduced expression // red_len = (m+n) int red_len = s.size(); // count opening brackets at the end of // stack int n = 0 ; while (!s.empty() && s.peek() == '{' ) { s.pop(); n++; } // return ceil(m/2) + ceil(n/2) which is // actually equal to (m+n)/2 + n%2 when // m+n is even. return (red_len / 2 + n % 2 ); } // Driver method public static void main(String[] args) { String expr = "}}{{" ; System.out.println(countMinReversals(expr)); } } // This code is contributed by Sumit Ghosh |
Python3
# Python3 program to find minimum number of # reversals required to balance an expression # Returns count of minimum reversals # for making expr balanced. Returns -1 # if expr cannot be balanced. def countMinReversals(expr): lenn = len (expr) # length of expression must be even # to make it balanced by using reversals. if (lenn % 2 ): return - 1 # After this loop, stack contains # unbalanced part of expression, # i.e., expression of the form "...." s = [] for i in range (lenn): if (expr[i] = = '}' and len (s)): if (s[ 0 ] = = '{' ): s.pop( 0 ) else : s.insert( 0 , expr[i]) else : s.insert( 0 , expr[i]) # Length of the reduced expression # red_len = (m+n) red_len = len (s) # count opening brackets at the # end of stack n = 0 while ( len (s) and s[ 0 ] = = '{' ): s.pop( 0 ) n + = 1 # return ceil(m/2) + ceil(n/2) which # is actually equal to (m+n)/2 + n%2 # when m+n is even. return (red_len / / 2 + n % 2 ) # Driver Code if __name__ = = '__main__' : expr = "}{" print (countMinReversals(expr.strip())) # This code is contributed by # Shubham Singh(SHUBHAMSINGH10) |
C#
// C# Code to count minimum reversal for // making an expression balanced. using System; using System.Collections.Generic; class GFG { // Method count minimum reversal for // making an expression balanced. // Returns -1 if expression cannot be balanced public static int countMinReversals( string expr) { int len = expr.Length; // length of expression must be // even to make it balanced by // using reversals. if (len % 2 != 0) { return -1; } // After this loop, stack contains // unbalanced part of expression, // i.e., expression of the form "}}..}{{..{" Stack< char > s = new Stack< char >(); for ( int i = 0; i < len; i++) { char c = expr[i]; if (c == '}' && s.Count > 0) { if (s.Peek() == '{' ) { s.Pop(); } else { s.Push(c); } } else { s.Push(c); } } // Length of the reduced expression // red_len = (m+n) int red_len = s.Count; // count opening brackets at // the end of stack int n = 0; while (s.Count > 0 && s.Peek() == '{' ) { s.Pop(); n++; } // return ceil(m/2) + ceil(n/2) which is // actually equal to (m+n)/2 + n%2 when // m+n is even. return (red_len / 2 + n % 2); } // Driver Code public static void Main( string [] args) { string expr = "}}{{" ; Console.WriteLine(countMinReversals(expr)); } } // This code is contributed by Shrikant13 |
Javascript
<script> // JavaScript program to find minimum number of // reversals required to balance an expression // Returns count of minimum reversals for making // expr balanced. Returns -1 if expr cannot be // balanced. function countMinReversals(expr) { let len = expr.length; // Expressions of odd lengths // cannot be balanced if (len % 2) return -1; // After this loop, stack contains unbalanced // part of expression, i.e., expression of the // form "}}..}{{..{" var s = new Array(); for (let i = 0; i < len; i++) { if (expr[i] == '}' && !s.length == 0) { if (s[s.length - 1] == '{' ) s.pop(); else s.push(expr[i]); } else s.push(expr[i]); } // Length of the reduced expression // red_len = (m+n) let red_len = s.length; // count opening brackets at the end of // stack let n = 0; while (!s.length == 0 && s[s.length - 1] == '{' ) { s.pop(); n++; } // return ceil(m/2) + ceil(n/2) which is // actually equal to (m+n)/2 + n%2 when // m+n is even. return (red_len / 2 + n % 2); } // Driver program to test above function let expr = "}}{{" ; document.write(countMinReversals(expr)); </script> |
2
Time Complexity: O(n)
Auxiliary Space: O(n)
An another Intuitive Solution can solve this problem with same complexity.
The idea is to follow the algorithm used in Check if the parentheses is balanced or not. We follow this algorithm with a new condition when we find that the parentheses is not balanced. This case arises when the stack is empty and we encounter a ‘ } ‘. In Check if the parentheses is balanced or not program we break the loop when we find that parentheses is not balanced but here we will reverse it to ‘ { ‘ and push it to the stack. While doing this, answer is incremented by 1.
Here, since we found a case of unbalanced expression the ‘ { ‘ must be changed in order to get a balanced expression. Also, changing this would be the most minimal way to get a balanced expression as it is a must condition to change it.
For example, string = “}{{}}{}}” will be converted to “{{{}}{}}” and we get a balanced expression. There may arise a case where after doing this to the string we have some ‘{‘ left in the stack. For example, string = “{}{{{{” will be converted to “{}{{{{” and there will be 4 ‘{‘ present in the stack which are not popped and are not balanced.
We can simply make it balanced by reversing the right half of the stack to ‘}’. Example: if stack has ‘ {{{{ ‘ left, we make it ‘ {{}} ‘ forming a balanced expression. Hence, answer gets updated by (stack size / 2). The case where the size of stack is odd, it is not possible to transform it to a balanced string.
Below is implementation of above idea:
C++
#include <iostream> using namespace std; #include <stack> int countMinReversals(string str) { // Step 1: Initialize a stack of char type and ans as 0. stack< char > st; int ans = 0; // Step 2: Run a loop for each character of the string for ( int i = 0; i < str.size(); i++) { // Step 2.1: If ' { ' encountered push it to the // stack if (str[i] == '{' ) st.push(str[i]); // Step 2.2: If ' } ' is encountered else { // Step 2.2.1: If stack has a '{' present for // '}' encountered, pop from the stack. if (!st.empty()) st.pop(); // Step 2.2.2: If stack is empty, change '}' to // '{' and push it to stack and increment ans by // 1 else { st.push( '{' ); ans++; } } } // Step 3: if stack size is odd return -1. if (st.size() % 2 != 0) return -1; // Step 4: Increment ans by ( stackSize/2 ). ans += st.size() / 2; return ans; } int main() { string expr = "{{{{}}" ; cout << countMinReversals(expr); return 0; } |
Java
/*package whatever //do not write package name here */ import java.io.*; import java.util.Stack; class GFG { static int countMinReversals(String str) { // Step 1: Initialize a stack of char type and ans as 0. Stack<Character> st = new Stack<Character>(); int ans = 0 ; // Step 2: Run a loop for each character of the string for ( int i = 0 ; i < str.length(); i++) { // Step 2.1: If ' { ' encountered push it to the // stack if (str.charAt(i) == '{' ) st.add(str.charAt(i)); // Step 2.2: If ' } ' is encountered else { // Step 2.2.1: If stack has a '{' present for // '}' encountered, pop from the stack. if (!st.isEmpty()) st.pop(); // Step 2.2.2: If stack is empty, change '}' to // '{' and push it to stack and increment ans by // 1 else { st.add( '{' ); ans++; } } } // Step 3: if stack size is odd return -1. if (st.size() % 2 != 0 ) return - 1 ; // Step 4: Increment ans by ( stackSize/2 ). ans += st.size() / 2 ; return ans; } // Driver code public static void main(String args[]) { String expr = "{{{{}}" ; System.out.println(countMinReversals(expr)); } } // This code iscontributed by shinjanpatra. |
Python3
# Python code to implement the approach def countMinReversals( Str ): # Step 1: Initialize a stack of char type and ans as 0. st = [] ans = 0 # Step 2: Run a loop for each character of the String for i in range ( len ( Str )): # Step 2.1: If ' { ' encountered push it to the # stack if ( Str [i] = = '{' ): st.append( Str [i]) # Step 2.2: If ' } ' is encountered else : # Step 2.2.1: If stack has a '{' present for # '}' encountered, pop from the stack. if ( len (st)> 0 ): st.pop() # Step 2.2.2: If stack is empty, change '}' to # '{' and push it to stack and increment ans by # 1 else : st.push( '{' ) ans + = 1 # Step 3: if stack size is odd return -1. if ( len (st) % 2 ! = 0 ): return - 1 # Step 4: Increment ans by ( stackSize/2 ). ans + = len (st) / / 2 return ans # driver code expr = "{{{{}}" print (countMinReversals(expr)) # This code is contributed by shinjanpatra |
C#
// C# Code to count minimum reversal for // making an expression balanced. using System; using System.Collections.Generic; class GFG { public static int countMinReversals( string str) { // Step 1: Initialize a stack of char type and ans as 0. Stack< char > st = new Stack< char >(); int ans = 0; // Step 2: Run a loop for each character of the string for ( int i = 0; i < str.Length; i++) { // Step 2.1: If ' { ' encountered push it to the // stack if (str[i] == '{' ) st.Push(str[i]); // Step 2.2: If ' } ' is encountered else { // Step 2.2.1: If stack has a '{' present for // '}' encountered, pop from the stack. if (st.Count > 0) st.Pop(); // Step 2.2.2: If stack is empty, change '}' to // '{' and push it to stack and increment ans by // 1 else { st.Push( '{' ); ans++; } } } // Step 3: if stack size is odd return -1. if (st.Count % 2 != 0) return -1; // Step 4: Increment ans by ( stackSize/2 ). ans += st.Count / 2; return ans; } // Driver Code public static void Main( string [] args) { string expr = "{{{{}}" ; Console.WriteLine(countMinReversals(expr)); } } // This code is contributed by kothavvsaakash |
Javascript
<script> // JavaScript code to implement the approach function countMinReversals(Str){ // Step 1: Initialize a stack of char type and ans as 0. let st = [] let ans = 0 // Step 2: Run a loop for each character of the String for (let i=0;i<Str.length;i++){ // Step 2.1: If ' { ' encountered push it to the // stack if (Str[i] == '{' ) st.push(Str[i]) // Step 2.2: If ' } ' is encountered else { // Step 2.2.1: If stack has a '{' present for // '}' encountered, pop from the stack. if (st.length>0) st.pop() // Step 2.2.2: If stack is empty, change '}' to // '{' and push it to stack and increment ans by // 1 else { st.push( '{' ) ans += 1 } } } // Step 3: if stack size is odd return -1. if (st.length % 2 != 0) return -1 // Step 4: Increment ans by ( stackSize/2 ). ans += st.length / 2 return ans } // driver code let expr = "{{{{}}" document.write(countMinReversals(expr), "</br>" ) // This code is contributed by shinjanpatra </script> |
Output:
1
Time Complexity: O(n)
Auxiliary Space: O(n)
Another efficient solution solve the problem in O(1) i.e. constant space. Since the expression only contains one type of brackets, the idea is to maintain two variables to keep count of left bracket as well as right bracket as we did in Length of the longest valid substring. If the expression has balanced brackets, then we decrement left variable else we increment right variable. Then all we need to return is ceil(left/2) + ceil(right/2).
C++
// C++ program to find minimum number of // reversals required to balance an expression #include <bits/stdc++.h> using namespace std; // Returns count of minimum reversals for making // expr balanced. Returns -1 if expr cannot be // balanced. int countMinReversals(string expr) { int len = expr.length(); // Expressions of odd lengths // cannot be balanced if (len % 2 != 0) { return -1; } int left_brace = 0, right_brace = 0; int ans; for ( int i = 0; i < len; i++) { // If we find a left bracket then we simply // increment the left bracket if (expr[i] == '{' ) { left_brace++; } // Else if left bracket is 0 then we find // unbalanced right bracket and increment // right bracket or if the expression // is balanced then we decrement left else { if (left_brace == 0) { right_brace++; } else { left_brace--; } } } ans = ceil (left_brace / 2.0) + ceil (right_brace / 2.0); return ans; } // Driver program to test above function int main() { string expr = "}}{{" ; cout << countMinReversals(expr); return 0; } |
Java
// Java Code to count minimum reversal for // making an expression balanced. import java.util.*; public class GFG { // Method count minimum reversal for // making an expression balanced. // Returns -1 if expression cannot be balanced static int countMinReversals(String expr) { int len = expr.length(); int ans; // Expressions of odd lengths // cannot be balanced if (len % 2 != 0 ) { return - 1 ; } int left_brace = 0 , right_brace = 0 ; for ( int i = 0 ; i < len; i++) { char ch = expr.charAt(i); // If we find a left bracket then we simply // increment the left bracket if (ch == '{' ) { left_brace++; } // Else if left bracket is 0 then we find // unbalanced right bracket and increment // right bracket or if the expression // is balanced then we decrement left else { if (left_brace == 0 ) { right_brace++; } else { left_brace--; } } } ans = ( int )(Math.ceil(( 0.0 + left_brace) / 2 ) + Math.ceil(( 0.0 + right_brace) / 2 )); return ans; } // Driver method public static void main(String[] args) { String expr = "}}{{" ; System.out.println(countMinReversals(expr)); } } |
Python3
# Python 3 program to find minimum number of # reversals required to balance an expression import math # Returns count of minimum reversals for making # expr balanced. Returns -1 if expr cannot be # balanced. def countMinReversals(expr): length = len (expr) # Expressions of odd lengths # cannot be balanced if (length % 2 ! = 0 ): return - 1 left_brace = 0 right_brace = 0 for i in range (length): # If we find a left bracket then we simply # increment the left bracket if (expr[i] = = '{' ): left_brace + = 1 # Else if left bracket is 0 then we find # unbalanced right bracket and increment # right bracket or if the expression # is balanced then we decrement left else : if (left_brace = = 0 ): right_brace + = 1 else : left_brace - = 1 ans = math.ceil(left_brace / 2 ) + math.ceil(right_brace / 2 ) return ans # Driver program to test above function if __name__ = = "__main__" : expr = "}}{{" print (countMinReversals(expr)) # This code is contributed by ukasp. |
C#
// C# Code to count minimum reversal for // making an expression balanced. using System; public class GFG { // Method count minimum reversal for // making an expression balanced. // Returns -1 if expression cannot be balanced static int countMinReversals(String expr) { int len = expr.Length; int ans; // Expressions of odd lengths // cannot be balanced if (len % 2 != 0) { return -1; } int left_brace = 0, right_brace = 0; for ( int i = 0; i < len; i++) { char ch = expr[i]; // If we find a left bracket then we simply // increment the left bracket if (ch == '{' ) { left_brace++; } // Else if left bracket is 0 then we find // unbalanced right bracket and increment // right bracket or if the expression // is balanced then we decrement left else { if (left_brace == 0) { right_brace++; } else { left_brace--; } } } ans = ( int )(Math.Ceiling((0.0 + left_brace) / 2) + Math.Ceiling((0.0 + right_brace) / 2)); return ans; } // Driver method public static void Main(String[] args) { String expr = "}}{{" ; Console.WriteLine(countMinReversals(expr)); } } // This code is contributed by aashish1995. |
Javascript
<script> // JavaScript program to find minimum number of // reversals required to balance an expression // Returns count of minimum reversals for making // expr balanced. Returns -1 if expr cannot be // balanced. function countMinReversals( expr) { let len = expr.length; // Expressions of odd lengths // cannot be balanced if (len % 2 != 0) { return -1; } let left_brace = 0, right_brace = 0; let ans; for (let i = 0; i < len; i++) { // If we find a left bracket then we simply // increment the left bracket if (expr[i] == '{' ) { left_brace++; } // Else if left bracket is 0 then we find // unbalanced right bracket and increment // right bracket or if the expression // is balanced then we decrement left else { if (left_brace == 0) { right_brace++; } else { left_brace--; } } } ans = Math.ceil(left_brace / 2) + Math.ceil(right_brace / 2); return ans; } // Driver program to test above function let expr = "}}{{" ; document.write(countMinReversals(expr)); </script> |
2
Time Complexity: O(n)
Auxiliary Space: O(1)
Instead of maintaining two different variables for left brace and right brace, we can do it using a single temporary variable.
Traverse the array. For each ‘{‘ , increment the value of temp by 1 and for each ‘}’, if value of temp >0, then decrement the value of temp by 1 else, increment the value of result as well as temp by 1. At end, add half of the value of temp to the result.
Below is the implementation of above approach in C++.
C++
// C++ program to find minimum number of // reversals required to balance an expression #include <bits/stdc++.h> using namespace std; // Returns count of minimum reversals for making // expr balanced. Returns -1 if expr cannot be // balanced. int countMinReversals(string s) { int temp = 0, res = 0, n = s.size(); if (n % 2 != 0) return -1; for ( int i = 0; i < n; i++) { if (s[i] == '{' ) temp++; else { if (temp == 0) { res++; temp++; } else temp--; } } if (temp > 0) res += temp / 2; return res; } // Driver program to test above function int main() { string expr = "}}{{" ; cout << countMinReversals(expr); return 0; // This code is contributed by Akansha Mittal } |
Java
// Java program to find minimum number of // reversals required to balance an expression import java.util.*; class GFG { // Returns count of minimum reversals for making // expr balanced. Returns -1 if expr cannot be // balanced. static int countMinReversals(String s) { int temp = 0 , res = 0 , n = s.length(); if (n % 2 != 0 ) return - 1 ; for ( int i = 0 ; i < n; i++) { if (s.charAt(i) == '{' ) temp++; else { if (temp == 0 ) { res++; temp++; } else temp--; } } if (temp > 0 ) res += temp / 2 ; return res; } // Driver program to test above function public static void main(String[] args) { String expr = "}}{{" ; System.out.print(countMinReversals(expr)); } } // This code is contributed by Rajput-Ji |
Python3
# Python program to find minimum number of # reversals required to balance an expression # Returns count of minimum reversals for making # expr balanced. Returns -1 if expr cannot be # balanced. def countMinReversals(s): temp, res, n = 0 , 0 , len (s) if (n % 2 ! = 0 ): return - 1 for i in range (n): if (s[i] = = '{' ): temp + = 1 else : if (temp = = 0 ): res + = 1 temp + = 1 else : temp - = 1 if (temp > 0 ): res + = temp / / 2 return res # Driver program to test above function expr = "}}{{" print (countMinReversals(expr)) # This code is contributed by shinjanpatra |
C#
// C# program to find minimum number of // reversals required to balance an expression using System; class GFG { // Returns count of minimum reversals for making // expr balanced. Returns -1 if expr cannot be // balanced. static int countMinReversals( string s) { int temp = 0, res = 0, n = s.Length; if (n % 2 != 0) return -1; for ( int i = 0; i < n; i++) { if (s[i] == '{' ) temp++; else { if (temp == 0) { res++; temp++; } else temp--; } } if (temp > 0) res += temp / 2; return res; } // Driver program to test above function public static void Main() { string expr = "}}{{" ; Console.Write(countMinReversals(expr)); } } // This code is contributed by ukasp. |
Javascript
<script> // javascript program to find minimum number of // reversals required to balance an expression // Returns count of minimum reversals for making // expr balanced. Returns -1 if expr cannot be // balanced. function countMinReversals( s) { var temp = 0, res = 0, n = s.length; if (n % 2 != 0) return -1; for (i = 0; i < n; i++) { if (s.charAt(i) == '{' ) temp++; else { if (temp == 0) { res++; temp++; } else temp--; } } if (temp > 0) res += temp / 2; return res; } // Driver program to test above function var expr = "}}{{" ; document.write(countMinReversals(expr)); // This code is contributed by Rajput-Ji </script> |
2
Time Complexity: O(n)
Auxiliary Space: O(1)
Thanks to Utkarsh Trivedi for suggesting above approach.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!