Given a number of friends who have to give or take some amount of money from one another. Design an algorithm by which the total cash flow among all the friends is minimized.
Example:
Following diagram shows input debts to be settled.
Above debts can be settled in following optimized way
The idea is to use Greedy algorithm where at every step, settle all amounts of one person and recur for remaining n-1 persons.
How to pick the first person? To pick the first person, calculate the net amount for every person where net amount is obtained by subtracting all debts (amounts to pay) from all credits (amounts to be paid). Once net amount for every person is evaluated, find two persons with maximum and minimum net amounts. These two persons are the most creditors and debtors. The person with minimum of two is our first person to be settled and removed from list. Let the minimum of two amounts be x. We pay ‘x’ amount from the maximum debtor to maximum creditor and settle one person. If x is equal to the maximum debit, then maximum debtor is settled, else maximum creditor is settled.
The following is detailed algorithm.
Do following for every person Pi where i is from 0 to n-1.
- Compute the net amount for every person. The net amount for person ‘i’ can be computed by subtracting sum of all debts from sum of all credits.
- Find the two persons that are maximum creditor and maximum debtor. Let the maximum amount to be credited maximum creditor be maxCredit and maximum amount to be debited from maximum debtor be maxDebit. Let the maximum debtor be Pd and maximum creditor be Pc.
- Find the minimum of maxDebit and maxCredit. Let minimum of two be x. Debit ‘x’ from Pd and credit this amount to Pc
- If x is equal to maxCredit, then remove Pc from set of persons and recur for remaining (n-1) persons.
- If x is equal to maxDebit, then remove Pd from set of persons and recur for remaining (n-1) persons.
Thanks to Balaji S for suggesting this method in a comment here.
The following is the implementation of the above algorithm.
C++14
// C++ program to find maximum cash flow among a set of // persons #include <bits/stdc++.h> using namespace std; // Number of persons (or vertices in the graph) #define N 3 // A utility function that returns index of minimum value in // arr[] int getMin( int arr[]) { int minInd = 0; for ( int i = 1; i < N; i++) if (arr[i] < arr[minInd]) minInd = i; return minInd; } // A utility function that returns index of maximum value in // arr[] int getMax( int arr[]) { int maxInd = 0; for ( int i = 1; i < N; i++) if (arr[i] > arr[maxInd]) maxInd = i; return maxInd; } // A utility function to return minimum of 2 values int minOf2( int x, int y) { return (x < y) ? x : y; } // amount[p] indicates the net amount to be credited/debited // to/from person 'p' // If amount[p] is positive, then i'th person will amount[i] // If amount[p] is negative, then i'th person will give // -amount[i] void minCashFlowRec( int amount[]) { // Find the indexes of minimum and maximum values in // amount[] amount[mxCredit] indicates the maximum // amount to be given // (or credited) to any person . // And amount[mxDebit] indicates the maximum amount to // be taken // (or debited) from any person. // So if there is a positive value in amount[], then // there must be a negative value int mxCredit = getMax(amount), mxDebit = getMin(amount); // If both amounts are 0, then all amounts are settled if (amount[mxCredit] == 0 && amount[mxDebit] == 0) return ; // Find the minimum of two amounts int min = minOf2(-amount[mxDebit], amount[mxCredit]); amount[mxCredit] -= min; amount[mxDebit] += min; // If minimum is the maximum amount to be cout << "Person " << mxDebit << " pays " << min << " to " << "Person " << mxCredit << endl; // Recur for the amount array. Note that it is // guaranteed that the recursion would terminate as // either amount[mxCredit] or amount[mxDebit] becomes 0 minCashFlowRec(amount); } // Given a set of persons as graph[] where graph[i][j] // indicates the amount that person i needs to pay person j, // this function finds and prints the minimum cash flow to // settle all debts. void minCashFlow( int graph[][N]) { // Create an array amount[], initialize all value in it // as 0. int amount[N] = { 0 }; // Calculate the net amount to be paid to person 'p', // and stores it in amount[p]. The value of amount[p] // can be calculated by subtracting debts of 'p' from // credits of 'p' for ( int p = 0; p < N; p++) for ( int i = 0; i < N; i++) amount[p] += (graph[i][p] - graph[p][i]); minCashFlowRec(amount); } // Driver program to test above function int main() { // graph[i][j] indicates the amount that person i needs // to pay person j int graph[N][N] = { { 0, 1000, 2000 }, { 0, 0, 5000 }, { 0, 0, 0 }, }; // Print the solution minCashFlow(graph); return 0; } |
Java
// Java program to find maximum cash // flow among a set of persons class GFG { // Number of persons (or vertices in the graph) static final int N = 3 ; // A utility function that returns // index of minimum value in arr[] static int getMin( int arr[]) { int minInd = 0 ; for ( int i = 1 ; i < N; i++) if (arr[i] < arr[minInd]) minInd = i; return minInd; } // A utility function that returns // index of maximum value in arr[] static int getMax( int arr[]) { int maxInd = 0 ; for ( int i = 1 ; i < N; i++) if (arr[i] > arr[maxInd]) maxInd = i; return maxInd; } // A utility function to return minimum of 2 values static int minOf2( int x, int y) { return (x < y) ? x: y; } // amount[p] indicates the net amount // to be credited/debited to/from person 'p' // If amount[p] is positive, then // i'th person will amount[i] // If amount[p] is negative, then // i'th person will give -amount[i] static void minCashFlowRec( int amount[]) { // Find the indexes of minimum and // maximum values in amount[] // amount[mxCredit] indicates the maximum amount // to be given (or credited) to any person . // And amount[mxDebit] indicates the maximum amount // to be taken(or debited) from any person. // So if there is a positive value in amount[], // then there must be a negative value int mxCredit = getMax(amount), mxDebit = getMin(amount); // If both amounts are 0, then // all amounts are settled if (amount[mxCredit] == 0 && amount[mxDebit] == 0 ) return ; // Find the minimum of two amounts int min = minOf2(-amount[mxDebit], amount[mxCredit]); amount[mxCredit] -= min; amount[mxDebit] += min; // If minimum is the maximum amount to be System.out.println( "Person " + mxDebit + " pays " + min + " to " + "Person " + mxCredit); // Recur for the amount array. // Note that it is guaranteed that // the recursion would terminate // as either amount[mxCredit] or // amount[mxDebit] becomes 0 minCashFlowRec(amount); } // Given a set of persons as graph[] // where graph[i][j] indicates // the amount that person i needs to // pay person j, this function // finds and prints the minimum // cash flow to settle all debts. static void minCashFlow( int graph[][]) { // Create an array amount[], // initialize all value in it as 0. int amount[]= new int [N]; // Calculate the net amount to // be paid to person 'p', and // stores it in amount[p]. The // value of amount[p] can be // calculated by subtracting // debts of 'p' from credits of 'p' for ( int p = 0 ; p < N; p++) for ( int i = 0 ; i < N; i++) amount[p] += (graph[i][p] - graph[p][i]); minCashFlowRec(amount); } // Driver code public static void main (String[] args) { // graph[i][j] indicates the amount // that person i needs to pay person j int graph[][] = { { 0 , 1000 , 2000 }, { 0 , 0 , 5000 }, { 0 , 0 , 0 },}; // Print the solution minCashFlow(graph); } } // This code is contributed by Anant Agarwal. |
Python3
# Python3 program to find maximum # cash flow among a set of persons # Number of persons(or vertices in graph) N = 3 # A utility function that returns # index of minimum value in arr[] def getMin(arr): minInd = 0 for i in range ( 1 , N): if (arr[i] < arr[minInd]): minInd = i return minInd # A utility function that returns # index of maximum value in arr[] def getMax(arr): maxInd = 0 for i in range ( 1 , N): if (arr[i] > arr[maxInd]): maxInd = i return maxInd # A utility function to # return minimum of 2 values def minOf2(x, y): return x if x < y else y # amount[p] indicates the net amount to # be credited/debited to/from person 'p' # If amount[p] is positive, then i'th # person will amount[i] # If amount[p] is negative, then i'th # person will give -amount[i] def minCashFlowRec(amount): # Find the indexes of minimum # and maximum values in amount[] # amount[mxCredit] indicates the maximum # amount to be given(or credited) to any person. # And amount[mxDebit] indicates the maximum amount # to be taken (or debited) from any person. # So if there is a positive value in amount[], # then there must be a negative value mxCredit = getMax(amount) mxDebit = getMin(amount) # If both amounts are 0, # then all amounts are settled if (amount[mxCredit] = = 0 and amount[mxDebit] = = 0 ): return 0 # Find the minimum of two amounts min = minOf2( - amount[mxDebit], amount[mxCredit]) amount[mxCredit] - = min amount[mxDebit] + = min # If minimum is the maximum amount to be print ( "Person " , mxDebit , " pays " , min , " to " , "Person " , mxCredit) # Recur for the amount array. Note that # it is guaranteed that the recursion # would terminate as either amount[mxCredit] # or amount[mxDebit] becomes 0 minCashFlowRec(amount) # Given a set of persons as graph[] where # graph[i][j] indicates the amount that # person i needs to pay person j, this # function finds and prints the minimum # cash flow to settle all debts. def minCashFlow(graph): # Create an array amount[], # initialize all value in it as 0. amount = [ 0 for i in range (N)] # Calculate the net amount to be paid # to person 'p', and stores it in amount[p]. # The value of amount[p] can be calculated by # subtracting debts of 'p' from credits of 'p' for p in range (N): for i in range (N): amount[p] + = (graph[i][p] - graph[p][i]) minCashFlowRec(amount) # Driver code # graph[i][j] indicates the amount # that person i needs to pay person j graph = [ [ 0 , 1000 , 2000 ], [ 0 , 0 , 5000 ], [ 0 , 0 , 0 ] ] minCashFlow(graph) # This code is contributed by Anant Agarwal. |
C#
// C# program to find maximum cash // flow among a set of persons using System; class GFG { // Number of persons (or // vertices in the graph) static int N = 3; // A utility function that returns // index of minimum value in arr[] static int getMin( int []arr) { int minInd = 0; for ( int i = 1; i < N; i++) if (arr[i] < arr[minInd]) minInd = i; return minInd; } // A utility function that returns // index of maximum value in arr[] static int getMax( int []arr) { int maxInd = 0; for ( int i = 1; i < N; i++) if (arr[i] > arr[maxInd]) maxInd = i; return maxInd; } // A utility function to return // minimum of 2 values static int minOf2( int x, int y) { return (x < y) ? x: y; } // amount[p] indicates the net amount // to be credited/debited to/from person 'p' // If amount[p] is positive, then // i'th person will amount[i] // If amount[p] is negative, then // i'th person will give -amount[i] static void minCashFlowRec( int []amount) { // Find the indexes of minimum and // maximum values in amount[] // amount[mxCredit] indicates the maximum amount // to be given (or credited) to any person . // And amount[mxDebit] indicates the maximum amount // to be taken(or debited) from any person. // So if there is a positive value in amount[], // then there must be a negative value int mxCredit = getMax(amount), mxDebit = getMin(amount); // If both amounts are 0, then // all amounts are settled if (amount[mxCredit] == 0 && amount[mxDebit] == 0) return ; // Find the minimum of two amounts int min = minOf2(-amount[mxDebit], amount[mxCredit]); amount[mxCredit] -= min; amount[mxDebit] += min; // If minimum is the maximum amount to be Console.WriteLine( "Person " + mxDebit + " pays " + min + " to " + "Person " + mxCredit); // Recur for the amount array. // Note that it is guaranteed that // the recursion would terminate // as either amount[mxCredit] or // amount[mxDebit] becomes 0 minCashFlowRec(amount); } // Given a set of persons as graph[] // where graph[i][j] indicates // the amount that person i needs to // pay person j, this function // finds and prints the minimum // cash flow to settle all debts. static void minCashFlow( int [,]graph) { // Create an array amount[], // initialize all value in it as 0. int []amount= new int [N]; // Calculate the net amount to // be paid to person 'p', and // stores it in amount[p]. The // value of amount[p] can be // calculated by subtracting // debts of 'p' from credits of 'p' for ( int p = 0; p < N; p++) for ( int i = 0; i < N; i++) amount[p] += (graph[i,p] - graph[p,i]); minCashFlowRec(amount); } // Driver code public static void Main () { // graph[i][j] indicates the amount // that person i needs to pay person j int [,]graph = { {0, 1000, 2000}, {0, 0, 5000}, {0, 0, 0},}; // Print the solution minCashFlow(graph); } } // This code is contributed by nitin mittal. |
PHP
<?php // PHP program to find maximum cash // flow among a set of persons // Number of persons (or vertices in the graph) $N = 3; // A utility function that returns // index of minimum value in arr[] function getMin( $arr ) { global $N ; $minInd = 0; for ( $i = 1; $i < $N ; $i ++) if ( $arr [ $i ] < $arr [ $minInd ]) $minInd = $i ; return $minInd ; } // A utility function that returns // index of maximum value in arr[] function getMax( $arr ) { global $N ; $maxInd = 0; for ( $i = 1; $i < $N ; $i ++) if ( $arr [ $i ] > $arr [ $maxInd ]) $maxInd = $i ; return $maxInd ; } // A utility function to return minimum of 2 values function minOf2( $x , $y ) { return ( $x < $y )? $x : $y ; } // amount[p] indicates the net amount // to be credited/debited to/from person 'p' // If amount[p] is positive, then i'th // person will amount[i] // If amount[p] is negative, then i'th // person will give -amount[i] function minCashFlowRec( $amount ) { // Find the indexes of minimum and // maximum values in amount[] // amount[mxCredit] indicates the // maximum amount to be given // (or credited) to any person . // And amount[mxDebit] indicates the // maximum amount to be taken // (or debited) from any person. // So if there is a positive value in // amount[], then there must // be a negative value $mxCredit = getMax( $amount ); $mxDebit = getMin( $amount ); // If both amounts are 0, then // all amounts are settled if ( $amount [ $mxCredit ] == 0 && $amount [ $mxDebit ] == 0) return ; // Find the minimum of two amounts $min = minOf2(- $amount [ $mxDebit ], $amount [ $mxCredit ]); $amount [ $mxCredit ] -= $min ; $amount [ $mxDebit ] += $min ; // If minimum is the maximum amount to be echo "Person " . $mxDebit . " pays " . $min . " to Person " . $mxCredit . "\n" ; // Recur for the amount array. Note // that it is guaranteed that the // recursion would terminate as // either amount[mxCredit] // or amount[mxDebit] becomes 0 minCashFlowRec( $amount ); } // Given a set of persons as graph[] // where graph[i][j] indicates the // amount that person i needs to // pay person j, this function finds // and prints the minimum cash flow // to settle all debts. function minCashFlow( $graph ) { global $N ; // Create an array amount[], // initialize all value in it as 0. $amount = array_fill (0, $N , 0); // Calculate the net amount to be // paid to person 'p', and stores // it in amount[p]. The value of // amount[p] can be calculated by // subtracting debts of 'p' from // credits of 'p' for ( $p = 0; $p < $N ; $p ++) for ( $i = 0; $i < $N ; $i ++) $amount [ $p ] += ( $graph [ $i ][ $p ] - $graph [ $p ][ $i ]); minCashFlowRec( $amount ); } // Driver code // graph[i][j] indicates the amount // that person i needs to pay person j $graph = array ( array (0, 1000, 2000), array (0, 0, 5000), array (0, 0, 0)); // Print the solution minCashFlow( $graph ); // This code is contributed by mits ?> |
Javascript
<script> // javascript program to find maximum cash // flow among a set of persons // Number of persons (or vertices in the graph) var N = 3; // A utility function that returns // index of minimum value in arr function getMin(arr) { var minInd = 0; for (i = 1; i < N; i++) if (arr[i] < arr[minInd]) minInd = i; return minInd; } // A utility function that returns // index of maximum value in arr function getMax(arr) { var maxInd = 0; for (i = 1; i < N; i++) if (arr[i] > arr[maxInd]) maxInd = i; return maxInd; } // A utility function to return minimum of 2 values function minOf2(x , y) { return (x < y) ? x: y; } // amount[p] indicates the net amount // to be credited/debited to/from person 'p' // If amount[p] is positive, then // i'th person will amount[i] // If amount[p] is negative, then // i'th person will give -amount[i] function minCashFlowRec(amount) { // Find the indexes of minimum and // maximum values in amount // amount[mxCredit] indicates the maximum amount // to be given (or credited) to any person . // And amount[mxDebit] indicates the maximum amount // to be taken(or debited) from any person. // So if there is a positive value in amount, // then there must be a negative value var mxCredit = getMax(amount), mxDebit = getMin(amount); // If both amounts are 0, then // all amounts are settled if (amount[mxCredit] == 0 && amount[mxDebit] == 0) return ; // Find the minimum of two amounts var min = minOf2(-amount[mxDebit], amount[mxCredit]); amount[mxCredit] -= min; amount[mxDebit] += min; // If minimum is the maximum amount to be document.write( "<br>Person " + mxDebit + " pays " + min + " to " + "Person " + mxCredit); // Recur for the amount array. // Note that it is guaranteed that // the recursion would terminate // as either amount[mxCredit] or // amount[mxDebit] becomes 0 minCashFlowRec(amount); } // Given a set of persons as graph // where graph[i][j] indicates // the amount that person i needs to // pay person j, this function // finds and prints the minimum // cash flow to settle all debts. function minCashFlow(graph) { // Create an array amount, // initialize all value in it as 0. var amount=Array.from({length: N}, (_, i) => 0); // Calculate the net amount to // be paid to person 'p', and // stores it in amount[p]. The // value of amount[p] can be // calculated by subtracting // debts of 'p' from credits of 'p' for (p = 0; p < N; p++) for (i = 0; i < N; i++) amount[p] += (graph[i][p] - graph[p][i]); minCashFlowRec(amount); } // Driver code // graph[i][j] indicates the amount // that person i needs to pay person j var graph = [ [0, 1000, 2000], [0, 0, 5000], [0, 0, 0]]; // Print the solution minCashFlow(graph); // This code is contributed by Amit Katiyar </script> |
Output:
Person 1 pays 4000 to Person 2 Person 0 pays 3000 to Person 2
Algorithmic Paradigm: Greedy
Time Complexity: O(N2) where N is the number of persons.
Space Complexity: O(N)
We need an array of size N to store the net amount. So, the space complexity is O(N).
This article is contributed by Gaurav. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!