Given an array arr[] of size N, the task is to find the maximum alternating sum of a subarray possible for a given array.
Alternating Subarray Sum: Considering a subarray {arr[i], arr[j]}, alternating sum of the subarray is arr[i] – arr[i + 1] + arr[i + 2] – …….. (+ / -) arr[j].
Examples:
Input: arr[] = {-4, -10, 3, 5}
Output: 9
Explanation: Subarray {arr[0], arr[2]} = {-4, -10, 3}. Therefore, the sum of this subarray is 9.Input: arr[] = {-1, 2, -1, 4, 7}
Output: 7
Approach: The given problem can be solved by using Dynamic Programming. Follow the steps below to solve the problem:
- Initialize a variable, say sum as 0, which will hold a maximum alternating subarray sum and a variable, say sumSoFar, to store the sum of subarrays starting from even indices in the 1st loop and the sum starting from odd indices, in the 2nd loop.
- In every iteration of both the loops, update sum as max(sum, sumSoFar).
- Finally, return the maximum alternating sum stored in the sum variable.
Below is the implementation of the above approach:
C++
// C++ implementation for the above approach #include <bits/stdc++.h> using namespace std; // Function to find the maximum alternating // sum of a subarray for the given array int alternatingSum( int arr[], int n) { int sum = 0; int sumSoFar = 0; // Traverse the array for ( int i = 0; i < n; i++) { // Store sum of subarrays // starting at even indices if (i % 2 == 1) { sumSoFar -= arr[i]; } else { sumSoFar = max( sumSoFar + arr[i], arr[i]); } // Update sum sum = max(sum, sumSoFar); } sumSoFar = 0; // Traverse the array for ( int i = 1; i < n; i++) { // Store sum of subarrays // starting at odd indices if (i % 2 == 0) { sumSoFar -= arr[i]; } else { sumSoFar = max( sumSoFar + arr[i], arr[i]); } // Update sum sum = max(sum, sumSoFar); } return sum; } // Driver code int main() { // Given Input int arr[] ={ -4, -10, 3, 5 }; int n = sizeof (arr)/ sizeof (arr[0]); // Function call int ans = alternatingSum(arr,n); cout<<ans<<endl; return 0; } // This code is contributed by Potta Lokesh |
Java
// Java implementation for the above approach import java.io.*; class GFG { // Function to find the maximum alternating // sum of a subarray for the given array public static int alternatingSum( int [] arr) { int sum = 0 ; int sumSoFar = 0 ; // Traverse the array for ( int i = 0 ; i < arr.length; i++) { // Store sum of subarrays // starting at even indices if (i % 2 == 1 ) { sumSoFar -= arr[i]; } else { sumSoFar = Math.max( sumSoFar + arr[i], arr[i]); } // Update sum sum = Math.max(sum, sumSoFar); } sumSoFar = 0 ; // Traverse the array for ( int i = 1 ; i < arr.length; i++) { // Store sum of subarrays // starting at odd indices if (i % 2 == 0 ) { sumSoFar -= arr[i]; } else { sumSoFar = Math.max( sumSoFar + arr[i], arr[i]); } // Update sum sum = Math.max(sum, sumSoFar); } return sum; } // Driver code public static void main(String[] args) { // Given Input int arr[] = new int [] { - 4 , - 10 , 3 , 5 }; // Function call int ans = alternatingSum(arr); System.out.println(ans); } } |
Python3
# Python implementation for the above approach # Function to find the maximum alternating # sum of a subarray for the given array def alternatingSum(arr, n): sum_ = 0 sumSoFar = 0 # Traverse the array for i in range (n): # Store sum of subarrays # starting at even indices if i % 2 = = 1 : sumSoFar - = arr[i] else : sumSoFar = max (arr[i], sumSoFar + arr[i]) # Update sum sum_ = max (sum_, sumSoFar) sumSoFar = 0 # Traverse array for i in range ( 1 , n): # Store sum of subarrays # starting at odd indices if i % 2 = = 0 : sumSoFar - = arr[i] else : sumSoFar = max (arr[i], sumSoFar + arr[i]) sum_ = max (sum_, sumSoFar) # update sum return sum_ # given array arr = [ - 4 , - 10 , 3 , 5 ] n = len (arr) # return sum ans = alternatingSum(arr, n) print (ans) # This code is contributed by Parth Manchanda |
C#
// C# implementation for the above approach using System; using System.Collections.Generic; class GFG{ // Function to find the maximum alternating // sum of a subarray for the given array static int alternatingSum( int []arr, int n) { int sum = 0; int sumSoFar = 0; // Traverse the array for ( int i = 0; i < n; i++) { // Store sum of subarrays // starting at even indices if (i % 2 == 1) { sumSoFar -= arr[i]; } else { sumSoFar = Math.Max( sumSoFar + arr[i], arr[i]); } // Update sum sum = Math.Max(sum, sumSoFar); } sumSoFar = 0; // Traverse the array for ( int i = 1; i < n; i++) { // Store sum of subarrays // starting at odd indices if (i % 2 == 0) { sumSoFar -= arr[i]; } else { sumSoFar = Math.Max( sumSoFar + arr[i], arr[i]); } // Update sum sum = Math.Max(sum, sumSoFar); } return sum; } // Driver code public static void Main() { // Given Input int []arr = { -4, -10, 3, 5 }; int n = arr.Length; // Function call int ans = alternatingSum(arr,n); Console.Write(ans); } } // This code is contributed by SURENDRA_GANGWAR |
Javascript
<script> // JavaScript implementation for the above approach // Function to find the maximum alternating // sum of a subarray for the given array function alternatingSum(arr) { var sum = 0; var sumSoFar = 0; // Traverse the array for ( var i = 0; i < arr.length; i++) { // Store sum of subarrays // starting at even indices if (i % 2 == 1) { sumSoFar -= arr[i]; } else { sumSoFar = Math.max( sumSoFar + arr[i], arr[i]); } // Update sum sum = Math.max(sum, sumSoFar); } sumSoFar = 0; // Traverse the array for ( var i = 1; i < arr.length; i++) { // Store sum of subarrays // starting at odd indices if (i % 2 == 0) { sumSoFar -= arr[i]; } else { sumSoFar = Math.max( sumSoFar + arr[i], arr[i]); } // Update sum sum = Math.max(sum, sumSoFar); } return sum; } // Driver code // Given Input var arr = new Array ( -4, -10, 3, 5 ); // Function call var ans = alternatingSum(arr); document.write(ans); // This code is contributed by shivanisinghss2110 </script> |
9
Time Complexity: O(N)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!