Thursday, November 28, 2024
Google search engine
HomeData Modelling & AIMaximum points of intersection n lines

Maximum points of intersection n lines

You are given n straight lines. You have to find a maximum number of points of intersection with these n lines.
Examples: 

Input : n = 4 
Output : 6

Input : n = 2
Output :1

 

img

Approach : 
As we have n number of line, and we have to find the maximum point of intersection using this n line. So this can be done using the combination. This problem can be thought of as a number of ways to select any two lines among n line. As every line intersects with others that are selected. 
So, the total number of points = nC2

Below is the implementation of the above approach: 

C++




// CPP program to find maximum intersecting
// points
#include <bits/stdc++.h>
using namespace std;
#define ll long int
 
 
// nC2 = (n)*(n-1)/2;
ll countMaxIntersect(ll n)
{
   return (n) * (n - 1) / 2;
}
 
// Driver code
int main()
{
    // n is number of line
    ll n = 8;
    cout << countMaxIntersect(n) << endl;
    return 0;
}


Java




// Java program to find maximum intersecting
// points
 
public class GFG {
     
    // nC2 = (n)*(n-1)/2;
    static long countMaxIntersect(long n)
    {
       return (n) * (n - 1) / 2;
    }
 
     
    // Driver code
    public static void main(String args[])
    {
        // n is number of line
        long n = 8;
        System.out.println(countMaxIntersect(n));
 
 
    }
    // This code is contributed by ANKITRAI1
}


Python3




# Python3 program to find maximum
# intersecting points
 
#nC2 = (n)*(n-1)/2
def countMaxIntersect(n):
    return int(n*(n - 1)/2)
 
#Driver code
if __name__=='__main__':
     
# n is number of line
    n = 8
    print(countMaxIntersect(n))
 
# this code is contributed by
# Shashank_Sharma


C#




// C# program to find maximum intersecting
// points
using System;
 
class GFG
{
     
    // nC2 = (n)*(n-1)/2;
    public static long countMaxIntersect(long n)
    {
    return (n) * (n - 1) / 2;
    }
 
     
    // Driver code
    public static void Main()
    {
        // n is number of line
        long n = 8;
        Console.WriteLine(countMaxIntersect(n));
    }
}
// This code is contributed by Soumik


PHP




<?PHP
// PHP program to find maximum intersecting
// points
 
// nC2 = (n)*(n-1)/2;
function countMaxIntersect($n)
{
    return ($n) * ($n - 1) / 2;
}
 
// Driver code
 
// n is number of line
$n = 8;
echo countMaxIntersect($n) . "\n";
 
// This code is contributed by ChitraNayal
?>


Javascript




<script>
 
// Javascript program to find maximum intersecting
// points
 
// nC2 = (n)*(n-1)/2;
function countMaxIntersect(n)
{
   return (n) * (n - 1) / 2;
}
 
// Driver code
 
// n is number of line
var n = 8;
document.write( countMaxIntersect(n) );
 
</script>


Output: 

28

 

Time Complexity: O(1)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments