Given an array arr[] of integers, find out the maximum difference between any two elements such that larger element appears after the smaller number.
Examples :
Input : arr = {2, 3, 10, 6, 4, 8, 1} Output : 8 Explanation : The maximum difference is between 10 and 2. Input : arr = {7, 9, 5, 6, 3, 2} Output : 2 Explanation : The maximum difference is between 9 and 7.
Method 1 (Simple)
Use two loops. In the outer loop, pick elements one by one and in the inner loop calculate the difference of the picked element with every other element in the array and compare the difference with the maximum difference calculated so far. Below is the implementation of the above approach :
C++
// C++ program to find Maximum difference // between two elements such that larger // element appears after the smaller number #include <bits/stdc++.h> using namespace std; /* The function assumes that there are at least two elements in array. The function returns a negative value if the array is sorted in decreasing order and returns 0 if elements are equal */ int maxDiff( int arr[], int arr_size) { int max_diff = arr[1] - arr[0]; for ( int i = 0; i < arr_size; i++) { for ( int j = i+1; j < arr_size; j++) { if (arr[j] - arr[i] > max_diff) max_diff = arr[j] - arr[i]; } } return max_diff; } /* Driver program to test above function */ int main() { int arr[] = {1, 2, 90, 10, 110}; int n = sizeof (arr) / sizeof (arr[0]); // Function calling cout << "Maximum difference is " << maxDiff(arr, n); return 0; } |
C
#include<stdio.h> /* The function assumes that there are at least two elements in array. The function returns a negative value if the array is sorted in decreasing order. Returns 0 if elements are equal */ int maxDiff( int arr[], int arr_size) { int max_diff = arr[1] - arr[0]; int i, j; for (i = 0; i < arr_size; i++) { for (j = i+1; j < arr_size; j++) { if (arr[j] - arr[i] > max_diff) max_diff = arr[j] - arr[i]; } } return max_diff; } /* Driver program to test above function */ int main() { int arr[] = {1, 2, 90, 10, 110}; printf ( "Maximum difference is %d" , maxDiff(arr, 5)); getchar (); return 0; } |
Java
// Java program to find Maximum difference // between two elements such that larger // element appears after the smaller number import java.io.*; public class MaximumDifference { /* The function assumes that there are at least two elements in array. The function returns a negative value if the array is sorted in decreasing order. Returns 0 if elements are equal */ int maxDiff( int arr[], int arr_size) { int max_diff = arr[ 1 ] - arr[ 0 ]; int i, j; for (i = 0 ; i < arr_size; i++) { for (j = i + 1 ; j < arr_size; j++) { if (arr[j] - arr[i] > max_diff) max_diff = arr[j] - arr[i]; } } return max_diff; } /* Driver program to test above functions */ public static void main(String[] args) { MaximumDifference maxdif = new MaximumDifference(); int arr[] = { 1 , 2 , 90 , 10 , 110 }; System.out.println( "Maximum difference is " + maxdif.maxDiff(arr, 5 )); } } // This code has been contributed by Mayank Jaiswal |
Python3
# Python 3 code to find Maximum difference # between two elements such that larger # element appears after the smaller number # The function assumes that there are at # least two elements in array. The function # returns a negative value if the array is # sorted in decreasing order. Returns 0 # if elements are equal def maxDiff(arr, arr_size): max_diff = arr[ 1 ] - arr[ 0 ] for i in range ( arr_size ): for j in range ( i + 1 , arr_size ): if (arr[j] - arr[i] > max_diff): max_diff = arr[j] - arr[i] return max_diff # Driver program to test above function arr = [ 1 , 2 , 90 , 10 , 110 ] size = len (arr) print ( "Maximum difference is" , maxDiff(arr, size)) # This code is contributed by Swetank Modi |
C#
// C# code to find Maximum difference using System; class GFG { // The function assumes that there // are at least two elements in array. // The function returns a negative // value if the array is sorted in // decreasing order. Returns 0 if // elements are equal static int maxDiff( int [] arr, int arr_size) { int max_diff = arr[1] - arr[0]; int i, j; for (i = 0; i < arr_size; i++) { for (j = i + 1; j < arr_size; j++) { if (arr[j] - arr[i] > max_diff) max_diff = arr[j] - arr[i]; } } return max_diff; } // Driver code public static void Main() { int [] arr = { 1, 2, 90, 10, 110 }; Console.Write( "Maximum difference is " + maxDiff(arr, 5)); } } // This code is contributed by Sam007 |
PHP
<?php // PHP program to find Maximum difference // between two elements such that larger // element appears after the smaller number /* The function assumes that there are at least two elements in array. The function returns a negative value if the array is sorted in decreasing order and returns 0 if elements are equal */ function maxDiff( $arr , $arr_size ) { $max_diff = $arr [1] - $arr [0]; for ( $i = 0; $i < $arr_size ; $i ++) { for ( $j = $i +1; $j < $arr_size ; $j ++) { if ( $arr [ $j ] - $arr [ $i ] > $max_diff ) $max_diff = $arr [ $j ] - $arr [ $i ]; } } return $max_diff ; } // Driver Code $arr = array (1, 2, 90, 10, 110); $n = sizeof( $arr ); // Function calling echo "Maximum difference is " . maxDiff( $arr , $n ); // This code is contributed // by Akanksha Rai(Abby_akku) |
Javascript
<script> // javascript program to find Maximum difference // between two elements such that larger // element appears after the smaller number /* The function assumes that there are at least two elements in array. The function returns a negative value if the array is sorted in decreasing order and returns 0 if elements are equal */ function maxDiff( arr, arr_size) { let max_diff = arr[1] - arr[0]; for (let i = 0; i < arr_size; i++) { for (let j = i+1; j < arr_size; j++) { if (arr[j] - arr[i] > max_diff) max_diff = arr[j] - arr[i]; } } return max_diff; } // Driver program to test above function let arr = [1, 2, 90, 10, 110]; let n = arr.length; // Function calling document.write( "Maximum difference is " + maxDiff(arr, n)); // This code is contributed by jana_sayantan. </script> |
Output :
Maximum difference is 109
Time Complexity : O(n^2)
Auxiliary Space : O(1)
Method 2 (Tricky and Efficient)
In this method, instead of taking difference of the picked element with every other element, we take the difference with the minimum element found so far. So we need to keep track of 2 things:
1) Maximum difference found so far (max_diff).
2) Minimum number visited so far (min_element).
C++
// C++ program to find Maximum difference // between two elements such that larger // element appears after the smaller number #include <bits/stdc++.h> using namespace std; /* The function assumes that there are at least two elements in array. The function returns a negative value if the array is sorted in decreasing order and returns 0 if elements are equal */ int maxDiff( int arr[], int arr_size) { // Maximum difference found so far int max_diff = arr[1] - arr[0]; // Minimum number visited so far int min_element = arr[0]; for ( int i = 1; i < arr_size; i++) { if (arr[i] - min_element > max_diff) max_diff = arr[i] - min_element; if (arr[i] < min_element) min_element = arr[i]; } return max_diff; } /* Driver program to test above function */ int main() { int arr[] = {1, 2, 90, 10, 110}; int n = sizeof (arr) / sizeof (arr[0]); // Function calling cout << "Maximum difference is " << maxDiff(arr, n); return 0; } |
C
#include<stdio.h> /* The function assumes that there are at least two elements in array. The function returns a negative value if the array is sorted in decreasing order. Returns 0 if elements are equal */ int maxDiff( int arr[], int arr_size) { int max_diff = arr[1] - arr[0]; int min_element = arr[0]; int i; for (i = 1; i < arr_size; i++) { if (arr[i] - min_element > max_diff) max_diff = arr[i] - min_element; if (arr[i] < min_element) min_element = arr[i]; } return max_diff; } /* Driver program to test above function */ int main() { int arr[] = {1, 2, 6, 80, 100}; int size = sizeof (arr)/ sizeof (arr[0]); printf ( "Maximum difference is %d" , maxDiff(arr, size)); getchar (); return 0; } |
Java
// Java program to find Maximum difference // between two elements such that larger // element appears after the smaller number import java.io.*; public class MaximumDifference { /* The function assumes that there are at least two elements in array. The function returns a negative value if the array is sorted in decreasing order. Returns 0 if elements are equal */ int maxDiff( int arr[], int arr_size) { int max_diff = arr[ 1 ] - arr[ 0 ]; int min_element = arr[ 0 ]; int i; for (i = 1 ; i < arr_size; i++) { if (arr[i] - min_element > max_diff) max_diff = arr[i] - min_element; if (arr[i] < min_element) min_element = arr[i]; } return max_diff; } /* Driver program to test above functions */ public static void main(String[] args) { MaximumDifference maxdif = new MaximumDifference(); int arr[] = { 1 , 2 , 90 , 10 , 110 }; int size = arr.length; System.out.println( "MaximumDifference is " + maxdif.maxDiff(arr, size)); } } // This code has been contributed by Mayank Jaiswal |
Python3
# Python 3 code to find Maximum difference # between two elements such that larger # element appears after the smaller number # The function assumes that there are # at least two elements in array. # The function returns a negative # value if the array is sorted in # decreasing order. Returns 0 if # elements are equal def maxDiff(arr, arr_size): max_diff = arr[ 1 ] - arr[ 0 ] min_element = arr[ 0 ] for i in range ( 1 , arr_size ): if (arr[i] - min_element > max_diff): max_diff = arr[i] - min_element if (arr[i] < min_element): min_element = arr[i] return max_diff # Driver program to test above function arr = [ 1 , 2 , 6 , 80 , 100 ] size = len (arr) print ( "Maximum difference is" , maxDiff(arr, size)) # This code is contributed by Swetank Modi |
C#
// C# code to find Maximum difference using System; class GFG { // The function assumes that there // are at least two elements in array. // The function returns a negative // value if the array is sorted in // decreasing order.Returns 0 if // elements are equal static int maxDiff( int [] arr, int arr_size) { int max_diff = arr[1] - arr[0]; int min_element = arr[0]; int i; for (i = 1; i < arr_size; i++) { if (arr[i] - min_element > max_diff) max_diff = arr[i] - min_element; if (arr[i] < min_element) min_element = arr[i]; } return max_diff; } // Driver code public static void Main() { int [] arr = { 1, 2, 90, 10, 110 }; int size = arr.Length; Console.Write( "MaximumDifference is " + maxDiff(arr, size)); } } // This code is contributed by Sam007 |
PHP
<?php // PHP program to find Maximum // difference between two elements // such that larger element appears // after the smaller number // The function assumes that there // are at least two elements in array. // The function returns a negative // value if the array is sorted in // decreasing order and returns 0 // if elements are equal function maxDiff( $arr , $arr_size ) { // Maximum difference found so far $max_diff = $arr [1] - $arr [0]; // Minimum number visited so far $min_element = $arr [0]; for ( $i = 1; $i < $arr_size ; $i ++) { if ( $arr [ $i ] - $min_element > $max_diff ) $max_diff = $arr [ $i ] - $min_element ; if ( $arr [ $i ] < $min_element ) $min_element = $arr [ $i ]; } return $max_diff ; } // Driver Code $arr = array (1, 2, 90, 10, 110); $n = count ( $arr ); // Function calling echo "Maximum difference is " . maxDiff( $arr , $n ); // This code is contributed by Sam007 ?> |
Javascript
<script> // Javascript code to find Maximum difference // between two elements such that larger // element appears after the smaller number // The function assumes that there // are at least two elements in array. // The function returns a negative // value if the array is sorted in // decreasing order.Returns 0 if // elements are equal function maxDiff(arr, arr_size) { let max_diff = arr[1] - arr[0]; let min_element = arr[0]; let i; for (i = 1; i < arr_size; i++) { if (arr[i] - min_element > max_diff) max_diff = arr[i] - min_element; if (arr[i] < min_element) min_element = arr[i]; } return max_diff; } let arr = [ 1, 2, 90, 10, 110 ]; let size = arr.length; document.write( "Maximum difference is " + maxDiff(arr, size)); </script> |
Output:
Maximum difference is 109
Time Complexity : O(n)
Auxiliary Space : O(1)
Like min element, we can also keep track of max element from right side. Thanks to Katamaran for suggesting this approach. Below is the implementation :
C++
// C++ program to find Maximum difference // between two elements such that larger // element appears after the smaller number #include <bits/stdc++.h> using namespace std; /* The function assumes that there are at least two elements in array. The function returns a negative value if the array is sorted in decreasing order and returns 0 if elements are equal */ int maxDiff( int arr[], int n) { // Initialize Result int maxDiff = -1; // Initialize max element from right side int maxRight = arr[n-1]; for ( int i = n-2; i >= 0; i--) { if (arr[i] > maxRight) maxRight = arr[i]; else { int diff = maxRight - arr[i]; if (diff > maxDiff) { maxDiff = diff; } } } return maxDiff; } /* Driver program to test above function */ int main() { int arr[] = {1, 2, 90, 10, 110}; int n = sizeof (arr) / sizeof (arr[0]); // Function calling cout << "Maximum difference is " << maxDiff(arr, n); return 0; } |
Java
// Java program to find Maximum difference // between two elements such that larger // element appears after the smaller number import java.io.*; class GFG { /* The function assumes that there are at least two elements in array. The function returns a negative value if the array is sorted in decreasing order and returns 0 if elements are equal */ static int maxDiff( int arr[], int n) { // Initialize Result int maxDiff = - 1 ; // Initialize max element from right side int maxRight = arr[n- 1 ]; for ( int i = n- 2 ; i >= 0 ; i--) { if (arr[i] > maxRight) maxRight = arr[i]; else { int diff = maxRight - arr[i]; if (diff > maxDiff) { maxDiff = diff; } } } return maxDiff; } /* Driver program to test above function */ public static void main (String[] args) { int arr[] = { 1 , 2 , 90 , 10 , 110 }; int n = arr.length; // Function calling System.out.println ( "Maximum difference is " + maxDiff(arr, n)); } //This code is contributed by Tushil.. } |
Python3
# Python3 program to find Maximum difference # between two elements such that larger # element appears after the smaller number # The function assumes that there are # at least two elements in array. The # function returns a negative value if the # array is sorted in decreasing order and # returns 0 if elements are equal def maxDiff(arr, n): # Initialize Result maxDiff = - 1 # Initialize max element from # right side maxRight = arr[ - 1 ] for i in reversed (arr[: - 1 ]): if (i > maxRight): maxRight = i else : diff = maxRight - i if (diff > maxDiff): maxDiff = diff return maxDiff # Driver Code if __name__ = = '__main__' : arr = [ 1 , 2 , 90 , 10 , 110 ] n = len (arr) # Function calling print ( "Maximum difference is" , maxDiff(arr, n)) # This code is contributed by 29AjayKumar |
C#
// C# program to find Maximum difference // between two elements such that larger // element appears after the smaller number using System; class GFG { /* The function assumes that there are at least two elements in array. The function returns a negative value if the array is sorted in decreasing order and returns 0 if elements are equal */ static int maxDiff( int [] arr, int n) { // Initialize Result int maxDiff = -1; // Initialize max element from right side int maxRight = arr[n-1]; for ( int i = n-2; i >= 0; i--) { if (arr[i] > maxRight) maxRight = arr[i]; else { int diff = maxRight - arr[i]; if (diff > maxDiff) { maxDiff = diff; } } } return maxDiff; } // Driver Code public static void Main () { int [] arr = {1, 2, 90, 10, 110}; int n = arr.Length; // Function calling Console.WriteLine( "Maximum difference is " + maxDiff(arr, n)); } } // This code is contributed // by Akanksha Rai |
PHP
<?php // PHP program to find Maximum difference // between two elements such that larger // element appears after the smaller number /* The function assumes that there are at least two elements in array. The function returns a negative value if the array is sorted in decreasing order and returns 0 if elements are equal */ function maxDiff( $arr , $n ) { // Initialize Result $maxDiff = -1; // Initialize max element from // right side $maxRight = $arr [ $n - 1]; for ( $i = $n - 2; $i >= 0; $i --) { if ( $arr [ $i ] > $maxRight ) $maxRight = $arr [ $i ]; else { $diff = $maxRight - $arr [ $i ]; if ( $diff > $maxDiff ) { $maxDiff = $diff ; } } } return $maxDiff ; } // Driver Code $arr = array (1, 2, 90, 10, 110); $n = sizeof( $arr ); // Function calling echo "Maximum difference is " , maxDiff( $arr , $n ); // This code is contributed by ajit ?> |
Javascript
<script> // Javascript program to find Maximum difference // between two elements such that larger // element appears after the smaller number /* The function assumes that there are at least two elements in array. The function returns a negative value if the array is sorted in decreasing order and returns 0 if elements are equal */ function maxDiff(arr, n) { // Initialize Result let maxDiff = -1; // Initialize max element from right side let maxRight = arr[n-1]; for (let i = n-2; i >= 0; i--) { if (arr[i] > maxRight) maxRight = arr[i]; else { let diff = maxRight - arr[i]; if (diff > maxDiff) { maxDiff = diff; } } } return maxDiff; } let arr = [1, 2, 90, 10, 110]; let n = arr.length; // Function calling document.write( "Maximum difference is " + maxDiff(arr, n)); </script> |
Output:
Maximum difference is 109
Time Complexity : O(n)
Auxiliary Space : O(1)
Method 3 (Another Tricky Solution)
First find the difference between the adjacent elements of the array and store all differences in an auxiliary array diff[] of size n-1. Now this problems turns into finding the maximum sum subarray of this difference array.Thanks to Shubham Mittal for suggesting this solution. Below is the implementation :
C++
// C++ program to find Maximum difference // between two elements such that larger // element appears after the smaller number #include <bits/stdc++.h> using namespace std; /* The function assumes that there are at least two elements in array. The function returns a negative value if the array is sorted in decreasing order and returns 0 if elements are equal */ int maxDiff( int arr[], int n) { // Create a diff array of size n-1. // The array will hold the difference // of adjacent elements int diff[n-1]; for ( int i=0; i < n-1; i++) diff[i] = arr[i+1] - arr[i]; // Now find the maximum sum // subarray in diff array int max_diff = diff[0]; for ( int i=1; i<n-1; i++) { if (diff[i-1] > 0) diff[i] += diff[i-1]; if (max_diff < diff[i]) max_diff = diff[i]; } return max_diff; } /* Driver program to test above function */ int main() { int arr[] = {80, 2, 6, 3, 100}; int n = sizeof (arr) / sizeof (arr[0]); // Function calling cout << "Maximum difference is " << maxDiff(arr, n); return 0; } |
C
#include<stdio.h> int maxDiff( int arr[], int n) { // Create a diff array of size n-1. The array will hold // the difference of adjacent elements int diff[n-1]; for ( int i=0; i < n-1; i++) diff[i] = arr[i+1] - arr[i]; // Now find the maximum sum subarray in diff array int max_diff = diff[0]; for ( int i=1; i<n-1; i++) { if (diff[i-1] > 0) diff[i] += diff[i-1]; if (max_diff < diff[i]) max_diff = diff[i]; } return max_diff; } /* Driver program to test above function */ int main() { int arr[] = {80, 2, 6, 3, 100}; int size = sizeof (arr)/ sizeof (arr[0]); printf ( "Maximum difference is %d" , maxDiff(arr, size)); return 0; } |
Java
// Java program to find Maximum difference // between two elements such that larger // element appears after the smaller number import java.io.*; public class MaximumDifference { int maxDiff( int arr[], int n) { // Create a diff array of size n-1. The array will hold // the difference of adjacent elements int diff[] = new int [n - 1 ]; for ( int i = 0 ; i < n - 1 ; i++) diff[i] = arr[i + 1 ] - arr[i]; // Now find the maximum sum subarray in diff array int max_diff = diff[ 0 ]; for ( int i = 1 ; i < n - 1 ; i++) { if (diff[i - 1 ] > 0 ) diff[i] += diff[i - 1 ]; if (max_diff < diff[i]) max_diff = diff[i]; } return max_diff; } // Driver program to test above functions public static void main(String[] args) { MaximumDifference mxdif = new MaximumDifference(); int arr[] = { 80 , 2 , 6 , 3 , 100 }; int size = arr.length; System.out.println(mxdif.maxDiff(arr, size)); } } // This code has been contributed by Mayank Jaiswal |
Python3
# Python 3 code to find Maximum difference # between two elements such that larger # element appears after the smaller number def maxDiff(arr, n): diff = [ 0 ] * (n - 1 ) for i in range ( 0 , n - 1 ): diff[i] = arr[i + 1 ] - arr[i] # Now find the maximum sum # subarray in diff array max_diff = diff[ 0 ] for i in range ( 1 , n - 1 ): if (diff[i - 1 ] > 0 ): diff[i] + = diff[i - 1 ] if (max_diff < diff[i]): max_diff = diff[i] return max_diff # Driver program to test above function arr = [ 80 , 2 , 6 , 3 , 100 ] size = len (arr) print ( "Maximum difference is" , maxDiff(arr, size)) # This code is contributed by Swetank Modi |
C#
// C# code to find Maximum difference using System; class GFG { static int maxDiff( int [] arr, int n) { // Create a diff array of size n-1. // The array will hold the // difference of adjacent elements int [] diff = new int [n - 1]; for ( int i = 0; i < n - 1; i++) diff[i] = arr[i + 1] - arr[i]; // Now find the maximum sum // subarray in diff array int max_diff = diff[0]; for ( int i = 1; i < n - 1; i++) { if (diff[i - 1] > 0) diff[i] += diff[i - 1]; if (max_diff < diff[i]) max_diff = diff[i]; } return max_diff; } // Driver code public static void Main() { int [] arr = { 80, 2, 6, 3, 100 }; int size = arr.Length; Console.Write(maxDiff(arr, size)); } } // This code is contributed by Sam007 |
PHP
<?php // PHP program to find Maximum difference // between two elements such that larger // element appears after the smaller number /* The function assumes that there are at least two elements in array. The function returns a negative value if the array is sorted in decreasing order and returns 0 if elements are equal */ function maxDiff( $arr , $n ) { // Create a diff array of size n-1. // The array will hold the difference // of adjacent elements $diff [ $n -1] = array (); for ( $i =0; $i < $n -1; $i ++) $diff [ $i ] = $arr [ $i +1] - $arr [ $i ]; // Now find the maximum sum // subarray in diff array $max_diff = $diff [0]; for ( $i =1; $i < $n -1; $i ++) { if ( $diff [ $i -1] > 0) $diff [ $i ] += $diff [ $i -1]; if ( $max_diff < $diff [ $i ]) $max_diff = $diff [ $i ]; } return $max_diff ; } // Driver Code $arr = array (80, 2, 6, 3, 100); $n = sizeof( $arr ); // Function calling echo "Maximum difference is " . maxDiff( $arr , $n ); // This code is contributed // by Akanksha Rai |
Javascript
<script> // JavaScript program to find Maximum difference // between two elements such that larger // element appears after the smaller number /* The function assumes that there are at least two elements in array. The function returns a negative value if the array is sorted in decreasing order and returns 0 if elements are equal */ function maxDiff(arr, n) { // Create a diff array of size n-1. // The array will hold the difference // of adjacent elements let diff = new Array(n - 1); for (let i = 0; i < n - 1; i++) diff[i] = arr[i + 1] - arr[i]; // Now find the maximum sum // subarray in diff array let max_diff = diff[0]; for (let i = 1; i < n - 1; i++) { if (diff[i - 1] > 0) diff[i] += diff[i - 1]; if (max_diff < diff[i]) max_diff = diff[i]; } return max_diff; } // Driver code let arr = [ 80, 2, 6, 3, 100 ]; let n = arr.length; // Function calling document.write( "Maximum difference is " + maxDiff(arr, n)); // This code is contributed by Mayank Tyagi </script> |
Output:
Maximum difference is 98
Time Complexity : O(n)
Auxiliary Space : O(n)
We can modify the above method to work in O(1) extra space. Instead of creating an auxiliary array, we can calculate diff and max sum in same loop. Following is the space optimized version.
C++
// C++ program to find Maximum difference // between two elements such that larger // element appears after the smaller number #include <bits/stdc++.h> using namespace std; /* The function assumes that there are at least two elements in array. The function returns a negative value if the array is sorted in decreasing order and returns 0 if elements are equal */ int maxDiff ( int arr[], int n) { // Initialize diff, current sum and max sum int diff = arr[1]-arr[0]; int curr_sum = diff; int max_sum = curr_sum; for ( int i=1; i<n-1; i++) { // Calculate current diff diff = arr[i+1]-arr[i]; // Calculate current sum if (curr_sum > 0) curr_sum += diff; else curr_sum = diff; // Update max sum, if needed if (curr_sum > max_sum) max_sum = curr_sum; } return max_sum; } /* Driver program to test above function */ int main() { int arr[] = {80, 2, 6, 3, 100}; int n = sizeof (arr) / sizeof (arr[0]); // Function calling cout << "Maximum difference is " << maxDiff(arr, n); return 0; } |
Java
// Java program to find Maximum // difference between two elements // such that larger element appears // after the smaller number import java.io.*; public class GFG { /* The function assumes that there are at least two elements in array. The function returns a negative value if the array is sorted in decreasing order and returns 0 if elements are equal */ static int maxDiff ( int arr[], int n) { // Initialize diff, current // sum and max sum int diff = arr[ 1 ] - arr[ 0 ]; int curr_sum = diff; int max_sum = curr_sum; for ( int i = 1 ; i < n - 1 ; i++) { // Calculate current diff diff = arr[i + 1 ] - arr[i]; // Calculate current sum if (curr_sum > 0 ) curr_sum += diff; else curr_sum = diff; // Update max sum, if needed if (curr_sum > max_sum) max_sum = curr_sum; } return max_sum; } // Driver Code public static void main(String[] args) { int arr[] = { 80 , 2 , 6 , 3 , 100 }; int n = arr.length; // Function calling System.out.print( "Maximum difference is " + maxDiff(arr, n)); } } // This code is contributed by Smitha |
Python3
# Python3 program to find Maximum difference # between two elements such that larger # element appears after the smaller number # The function assumes that there are # at least two elements in array. The # function returns a negative value if # the array is sorted in decreasing # order and returns 0 if elements are equal def maxDiff (arr, n): # Initialize diff, current # sum and max sum diff = arr[ 1 ] - arr[ 0 ] curr_sum = diff max_sum = curr_sum for i in range ( 1 , n - 1 ): # Calculate current diff diff = arr[i + 1 ] - arr[i] # Calculate current sum if (curr_sum > 0 ): curr_sum + = diff else : curr_sum = diff # Update max sum, if needed if (curr_sum > max_sum): max_sum = curr_sum return max_sum # Driver Code if __name__ = = '__main__' : arr = [ 80 , 2 , 6 , 3 , 100 ] n = len (arr) # Function calling print ( "Maximum difference is" , maxDiff(arr, n)) # This code is contributed # by 29AjayKumar |
C#
// C# program to find Maximum // difference between two elements // such that larger element appears // after the smaller number using System; class GFG { /* The function assumes that there are at least two elements in array. The function returns a negative value if the array is sorted in decreasing order and returns 0 if elements are equal */ static int maxDiff ( int [] arr, int n) { // Initialize diff, current // sum and max sum int diff = arr[1] - arr[0]; int curr_sum = diff; int max_sum = curr_sum; for ( int i = 1; i < n - 1; i++) { // Calculate current diff diff = arr[i + 1] - arr[i]; // Calculate current sum if (curr_sum > 0) curr_sum += diff; else curr_sum = diff; // Update max sum, if needed if (curr_sum > max_sum) max_sum = curr_sum; } return max_sum; } // Driver Code public static void Main() { int [] arr = {80, 2, 6, 3, 100}; int n = arr.Length; // Function calling Console.WriteLine( "Maximum difference is " + maxDiff(arr, n)); } } // This code is contributed // by Akanksha Rai(Abby_akku) |
PHP
<?php // PHP program to find Maximum difference // between two elements such that larger // element appears after the smaller number /* The function assumes that there are at least two elements in array. The function returns a negative value if the array is sorted in decreasing order and returns 0 if elements are equal */ function maxDiff ( $arr , $n ) { // Initialize diff, current sum // and max sum $diff = $arr [1] - $arr [0]; $curr_sum = $diff ; $max_sum = $curr_sum ; for ( $i = 1; $i < $n - 1; $i ++) { // Calculate current diff $diff = $arr [ $i + 1] - $arr [ $i ]; // Calculate current sum if ( $curr_sum > 0) $curr_sum += $diff ; else $curr_sum = $diff ; // Update max sum, if needed if ( $curr_sum > $max_sum ) $max_sum = $curr_sum ; } return $max_sum ; } // Driver Code $arr = array (80, 2, 6, 3, 100); $n = sizeof( $arr ); // Function calling echo "Maximum difference is " , maxDiff( $arr , $n ); // This code is contributed // by Sach_code ?> |
Javascript
<script> // Javascript program to find Maximum // difference between two elements // such that larger element appears // after the smaller number /* The function assumes that there are at least two elements in array. The function returns a negative value if the array is sorted in decreasing order and returns 0 if elements are equal */ function maxDiff (arr, n) { // Initialize diff, current // sum and max sum let diff = arr[1] - arr[0]; let curr_sum = diff; let max_sum = curr_sum; for (let i = 1; i < n - 1; i++) { // Calculate current diff diff = arr[i + 1] - arr[i]; // Calculate current sum if (curr_sum > 0) curr_sum += diff; else curr_sum = diff; // Update max sum, if needed if (curr_sum > max_sum) max_sum = curr_sum; } return max_sum; } // Driver Code let arr = [ 80, 2, 6, 3, 100 ]; let n = arr.length; // Function calling document.write( "Maximum difference is " + maxDiff(arr, n)); // This code is contributed by rag2127 </script> |
Output:
Maximum difference is 98
Time Complexity : O(n)
Auxiliary Space : O(1)
Below is a variation of this problem:
Maximum difference of sum of elements in two rows in a matrix
Please write comments if you find any bug in above codes/algorithms, or find other ways to solve the same problem
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!