Given an array arr[], the task is to choose a subarray of size K which contains the maximum number of valley points with respect to adjacent elements.
An element arr[i] is known as a valley point, if both of its adjacent elements are greater than it, i.e. and .
Examples:
Input: arr[] = {5, 4, 6, 4, 5, 2, 3, 1}, K = 7 the
Output: 3
Explanation:
In subarray arr[0-6] = {5, 4, 6, 4, 5, 2, 3}
There are 3 Valley points in the subarray, which is maximum.
Input: arr[] = {2, 1, 4, 2, 3, 4, 1, 2}, K = 4
Output: 1
Explanation:
In subarray arr[0-3] = {2, 1, 4, 2}
There is only one valley point in the subarray, which is the maximum.
Approach: The idea is to use the sliding window technique to solve this problem.
Below is an illustration of the steps of the approach:
- Find the total count of valley points in the first sub-array of size K.
- Iterate for all the starting points of the possible subarrays, that is N-K points of the array, and apply the inclusion and exclusion principle to compute the number of valley points in the current window.
- At each step, update the final answer to compute the global maximum of every subarray.
Below is the implementation of the above approach:
C++
// C++ implementation to find the // maximum number of valley elements // in the subarrays of size K #include<bits/stdc++.h> using namespace std; // Function to find the valley elements // in the array which contains // in the subarrays of the size K void minpoint( int arr[], int n, int k) { int min_point = 0; for ( int i = 1; i < k-1 ; i++) { // Increment min_point // if element at index i // is smaller than element // at index i + 1 and i-1 if (arr[i] < arr[i - 1] && arr[i] < arr[i + 1]) min_point += 1; } // final_point to maintain maximum // of min points of subarray int final_point = min_point; // Iterate over array // from kth element for ( int i = k ; i < n; i++) { // Leftmost element of subarray if (arr[i - ( k - 1 )] < arr[i - ( k - 1 ) + 1]&& arr[i - ( k - 1 )] < arr[i - ( k - 1 ) - 1]) min_point -= 1; // Rightmost element of subarray if (arr[i - 1] < arr[i] && arr[i - 1] < arr[i - 2]) min_point += 1; // if new subarray have greater // number of min points than previous // subarray, then final_point is modified if (min_point > final_point) final_point = min_point; } // Max minimum points in // subarray of size k cout<<(final_point); } // Driver Code int main() { int arr[] = {2, 1, 4, 2, 3, 4, 1, 2}; int n = sizeof (arr)/ sizeof (arr[0]); int k = 4; minpoint(arr, n, k); return 0; } // This code contributed by chitranayal |
Java
// Java implementation to find the // maximum number of valley elements // in the subarrays of size K class GFG{ // Function to find the valley elements // in the array which contains // in the subarrays of the size K static void minpoint( int arr[], int n, int k) { int min_point = 0 ; for ( int i = 1 ; i < k - 1 ; i++) { // Increment min_point // if element at index i // is smaller than element // at index i + 1 and i-1 if (arr[i] < arr[i - 1 ] && arr[i] < arr[i + 1 ]) min_point += 1 ; } // final_point to maintain maximum // of min points of subarray int final_point = min_point; // Iterate over array // from kth element for ( int i = k ; i < n; i++) { // Leftmost element of subarray if (arr[i - ( k - 1 )] < arr[i - ( k - 1 ) + 1 ] && arr[i - ( k - 1 )] < arr[i - ( k - 1 ) - 1 ]) min_point -= 1 ; // Rightmost element of subarray if (arr[i - 1 ] < arr[i] && arr[i - 1 ] < arr[i - 2 ]) min_point += 1 ; // If new subarray have greater // number of min points than previous // subarray, then final_point is modified if (min_point > final_point) final_point = min_point; } // Max minimum points in // subarray of size k System.out.println(final_point); } // Driver Code public static void main (String[] args) { int arr[] = { 2 , 1 , 4 , 2 , 3 , 4 , 1 , 2 }; int n = arr.length; int k = 4 ; minpoint(arr, n, k); } } // This code is contributed by AnkitRai01 |
Python3
# Python3 implementation to find the # maximum number of valley elements # in the subarrays of size K # Function to find the valley elements # in the array which contains # in the subarrays of the size K def minpoint(arr, n, k): min_point = 0 for i in range ( 1 , k - 1 ): # Increment min_point # if element at index i # is smaller than element # at index i + 1 and i-1 if (arr[i] < arr[i - 1 ] and arr[i] < arr[i + 1 ]): min_point + = 1 # final_point to maintain maximum # of min points of subarray final_point = min_point # Iterate over array # from kth element for i in range (k, n): # Leftmost element of subarray if (arr[i - ( k - 1 )] < arr[i - ( k - 1 ) + 1 ] and \ arr[i - ( k - 1 )] < arr[i - ( k - 1 ) - 1 ]): min_point - = 1 # Rightmost element of subarray if (arr[i - 1 ] < arr[i] and arr[i - 1 ] < arr[i - 2 ]): min_point + = 1 # if new subarray have greater # number of min points than previous # subarray, then final_point is modified if (min_point > final_point): final_point = min_point # Max minimum points in # subarray of size k print (final_point) # Driver Code if __name__ = = "__main__" : arr = [ 2 , 1 , 4 , 2 , 3 , 4 , 1 , 2 ] n = len (arr) k = 4 minpoint(arr, n, k) |
C#
// C# implementation to find the // maximum number of valley elements // in the subarrays of size K using System; class GFG{ // Function to find the valley elements // in the array which contains // in the subarrays of the size K static void minpoint( int []arr, int n, int k) { int min_point = 0; for ( int i = 1; i < k - 1; i++) { // Increment min_point // if element at index i // is smaller than element // at index i + 1 and i-1 if (arr[i] < arr[i - 1] && arr[i] < arr[i + 1]) min_point += 1; } // final_point to maintain maximum // of min points of subarray int final_point = min_point; // Iterate over array // from kth element for ( int i = k ; i < n; i++) { // Leftmost element of subarray if (arr[i - ( k - 1 )] < arr[i - ( k - 1 ) + 1] && arr[i - ( k - 1 )] < arr[i - ( k - 1 ) - 1]) min_point -= 1; // Rightmost element of subarray if (arr[i - 1] < arr[i] && arr[i - 1] < arr[i - 2]) min_point += 1; // If new subarray have greater // number of min points than previous // subarray, then final_point is modified if (min_point > final_point) final_point = min_point; } // Max minimum points in // subarray of size k Console.WriteLine(final_point); } // Driver Code public static void Main ( string [] args) { int []arr = { 2, 1, 4, 2, 3, 4, 1, 2 }; int n = arr.Length; int k = 4; minpoint(arr, n, k); } } // This code is contributed by AnkitRai01 |
Javascript
<script> // Javascript implementation to find the // maximum number of valley elements // in the subarrays of size K // Function to find the valley elements // in the array which contains // in the subarrays of the size K function minpoint(arr, n, k) { let min_point = 0; for (let i = 1; i < k - 1; i++) { // Increment min_point // if element at index i // is smaller than element // at index i + 1 and i-1 if (arr[i] < arr[i - 1] && arr[i] < arr[i + 1]) min_point += 1; } // final_point to maintain maximum // of min points of subarray let final_point = min_point; // Iterate over array // from kth element for (let i = k; i < n; i++) { // Leftmost element of subarray if (arr[i - (k - 1)] < arr[i - (k - 1) + 1] && arr[i - (k - 1)] < arr[i - (k - 1) - 1]) min_point -= 1; // Rightmost element of subarray if (arr[i - 1] < arr[i] && arr[i - 1] < arr[i - 2]) min_point += 1; // if new subarray have greater // number of min points than previous // subarray, then final_point is modified if (min_point > final_point) final_point = min_point; } // Max minimum points in // subarray of size k document.write(final_point); } // Driver Code let arr = [2, 1, 4, 2, 3, 4, 1, 2]; let n = arr.length; let k = 4; minpoint(arr, n, k); // This code contributed by _saurabh_jaiswal </script> |
1
Time Complexity: O(N)
Space Complexity: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!