Given a string consisting of opening and closing parenthesis, find the length of the longest valid parenthesis substring.
Examples:
Input : ((()
Output : 2
Explanation : ()
Input: )()())
Output : 4
Explanation: ()()
Input: ()(()))))
Output: 6
Explanation: ()(())
A Simple Approach is to find all the substrings of given string. For every string, check if it is a valid string or not. If valid and length is more than maximum length so far, then update maximum length. We can check whether a substring is valid or not in linear time using a stack (See this for details).
Time complexity of this solution is O(n3).
Space Complexity: O(1)
An Efficient Solution can solve this problem in O(n) time. The idea is to store indexes of previous starting brackets in a stack. The first element of the stack is a special element that provides index before the beginning of valid substring (base for next valid string).
1) Create an empty stack and push -1 to it.
The first element of the stack is used
to provide a base for the next valid string.
2) Initialize result as 0.
3) If the character is '(' i.e. str[i] == '('),
push index'i' to the stack.
2) Else (if the character is ')')
a) Pop an item from the stack (Most of the
time an opening bracket)
b) If the stack is not empty, then find the
length of current valid substring by taking
the difference between the current index and
top of the stack. If current length is more
than the result, then update the result.
c) If the stack is empty, push the current index
as a base for the next valid substring.
3) Return result.
Below is the implementation of the above algorithm.
C++
// C++ program to find length of the // longest valid substring #include <bits/stdc++.h> using namespace std; int findMaxLen(string str) { int n = str.length(); // Create a stack and push -1 as // initial index to it. stack< int > stk; stk.push(-1); // Initialize result int result = 0; // Traverse all characters of given string for ( int i = 0; i < n; i++) { // If opening bracket, push index of it if (str[i] == '(' ) stk.push(i); // If closing bracket, i.e.,str[i] = ')' else { // Pop the previous opening // bracket's index if (!stk.empty()) { stk.pop(); } // Check if this length formed with base of // current valid substring is more than max // so far if (!stk.empty()) result = max(result, i - stk.top()); // If stack is empty. push current index as // base for next valid substring (if any) else stk.push(i); } } return result; } // Driver code int main() { string str = "((()()" ; // Function call cout << findMaxLen(str) << endl; str = "()(()))))" ; // Function call cout << findMaxLen(str) << endl; return 0; } |
Java
// Java program to find length of the longest valid // substring import java.util.Stack; class Test { // method to get length of the longest valid static int findMaxLen(String str) { int n = str.length(); // Create a stack and push -1 // as initial index to it. Stack<Integer> stk = new Stack<>(); stk.push(- 1 ); // Initialize result int result = 0 ; // Traverse all characters of given string for ( int i = 0 ; i < n; i++) { // If opening bracket, push index of it if (str.charAt(i) == '(' ) stk.push(i); // // If closing bracket, i.e.,str[i] = ')' else { // Pop the previous // opening bracket's index if (!stk.empty()) stk.pop(); // Check if this length // formed with base of // current valid substring // is more than max // so far if (!stk.empty()) result = Math.max(result, i - stk.peek()); // If stack is empty. push // current index as base // for next valid substring (if any) else stk.push(i); } } return result; } // Driver code public static void main(String[] args) { String str = "((()()" ; // Function call System.out.println(findMaxLen(str)); str = "()(()))))" ; // Function call System.out.println(findMaxLen(str)); } } |
Python3
# Python program to find length of the longest valid # substring def findMaxLen(string): n = len (string) # Create a stack and push -1 # as initial index to it. stk = [] stk.append( - 1 ) # Initialize result result = 0 # Traverse all characters of given string for i in range (n): # If opening bracket, push index of it if string[i] = = '(' : stk.append(i) # If closing bracket, i.e., str[i] = ')' else : # Pop the previous opening bracket's index if len (stk) ! = 0 : stk.pop() # Check if this length formed with base of # current valid substring is more than max # so far if len (stk) ! = 0 : result = max (result, i - stk[ len (stk) - 1 ]) # If stack is empty. push current index as # base for next valid substring (if any) else : stk.append(i) return result # Driver code string = "((()()" # Function call print (findMaxLen(string)) string = "()(()))))" # Function call print (findMaxLen(string)) # This code is contributed by Bhavya Jain # This code is modified by Susobhan Akhuli |
C#
// C# program to find length of // the longest valid substring using System; using System.Collections.Generic; class GFG { // method to get length of // the longest valid public static int findMaxLen( string str) { int n = str.Length; // Create a stack and push -1 as // initial index to it. Stack< int > stk = new Stack< int >(); stk.Push(-1); // Initialize result int result = 0; // Traverse all characters of // given string for ( int i = 0; i < n; i++) { // If opening bracket, push // index of it if (str[i] == '(' ) { stk.Push(i); } else // If closing bracket, // i.e.,str[i] = ')' { // Pop the previous opening // bracket's index if (stk.Count > 0) stk.Pop(); // Check if this length formed // with base of current valid // substring is more than max // so far if (stk.Count > 0) { result = Math.Max(result, i - stk.Peek()); } // If stack is empty. push current // index as base for next valid // substring (if any) else { stk.Push(i); } } } return result; } // Driver Code public static void Main( string [] args) { string str = "((()()" ; // Function call Console.WriteLine(findMaxLen(str)); str = "()(()))))" ; // Function call Console.WriteLine(findMaxLen(str)); } } // This code is contributed by Shrikant13 |
Javascript
<script> // JavaScript Program for the above approach function findMaxLen(str) { let n = str.length; // Create a stack and push -1 as // initial index to it. let stk = []; stk.push(-1); // Initialize result let result = 0; // Traverse all characters of given string for (let i = 0; i < n; i++) { // If opening bracket, push index of it if (str.charAt(i) == '(' ) { stk.push(i); } // If closing bracket, i.e.,str[i] = ')' else { // Pop the previous opening // bracket's index if (stk.length != 0) { stk.pop(); } // Check if this length formed with base of // current valid substring is more than max // so far if (stk.length != 0) { result = Math.max(result, i - stk[stk.length - 1]); } // If stack is empty. push current index as // base for next valid substring (if any) else { stk.push(i); } } } return result; } // Driver code let str = "((()()" ; // Function call document.write(findMaxLen(str) + "<br>" ); str = "()(()))))" ; // Function call document.write(findMaxLen(str) + "<br>" ); // This code is contributed by Potta Lokesh </script> |
4 6
Time Complexity: O(N), here N is the length of string.
Auxiliary Space: O(N)
Explanation with example:
Input: str = "(()()"
Initialize result as 0 and stack with one item -1.
For i = 0, str[0] = '(', we push 0 in stack
For i = 1, str[1] = '(', we push 1 in stack
For i = 2, str[2] = ')', currently stack has
[-1, 0, 1], we pop from the stack and the stack
now is [-1, 0] and length of current valid substring
becomes 2 (we get this 2 by subtracting stack top from
current index).
Since the current length is more than the current result,
we update the result.
For i = 3, str[3] = '(', we push again, stack is [-1, 0, 3].
For i = 4, str[4] = ')', we pop from the stack, stack
becomes [-1, 0] and length of current valid substring
becomes 4 (we get this 4 by subtracting stack top from
current index).
Since current length is more than current result,
we update result.
Another Efficient Approach can solve the problem in O(n) time. The idea is to maintain an array that stores the length of the longest valid substring ending at that index. We iterate through the array and return the maximum value.
1) Create an array longest of length n (size of the input
string) initialized to zero.
The array will store the length of the longest valid
substring ending at that index.
2) Initialize result as 0.
3) Iterate through the string from second character
a) If the character is '(' set longest[i]=0 as no
valid sub-string will end with '('.
b) Else
i) if s[i-1] = '('
set longest[i] = longest[i-2] + 2
ii) else
set longest[i] = longest[i-1] + 2 +
longest[i-longest[i-1]-2]
4) In each iteration update result as the maximum of
result and longest[i]
5) Return result.
Below is the implementations of the above algorithm.
C++
// C++ program to find length of the longest valid // substring #include <bits/stdc++.h> using namespace std; int findMaxLen(string s) { if (s.length() <= 1) return 0; // Initialize curMax to zero int curMax = 0; vector< int > longest(s.size(), 0); // Iterate over the string starting from second index for ( int i = 1; i < s.length(); i++) { if (s[i] == ')' && i - longest[i - 1] - 1 >= 0 && s[i - longest[i - 1] - 1] == '(' ) { longest[i] = longest[i - 1] + 2 + ((i - longest[i - 1] - 2 >= 0) ? longest[i - longest[i - 1] - 2] : 0); curMax = max(longest[i], curMax); } } return curMax; } // Driver code int main() { string str = "((()()" ; // Function call cout << findMaxLen(str) << endl; str = "()(()))))" ; // Function call cout << findMaxLen(str) << endl; return 0; } // This code is contributed by Vipul Lohani |
Java
// Java program to find length of the longest valid // subString import java.util.*; class GFG { static int findMaxLen(String s) { if (s.length() <= 1 ) return 0 ; // Initialize curMax to zero int curMax = 0 ; int [] longest = new int [s.length()]; // Iterate over the String starting from second index for ( int i = 1 ; i < s.length(); i++) { if (s.charAt(i) == ')' && i - longest[i - 1 ] - 1 >= 0 && s.charAt(i - longest[i - 1 ] - 1 ) == '(' ) { longest[i] = longest[i - 1 ] + 2 + ((i - longest[i - 1 ] - 2 >= 0 ) ? longest[i - longest[i - 1 ] - 2 ] : 0 ); curMax = Math.max(longest[i], curMax); } } return curMax; } // Driver code public static void main(String[] args) { String str = "((()()" ; // Function call System.out.print(findMaxLen(str) + "\n" ); str = "()(()))))" ; // Function call System.out.print(findMaxLen(str) + "\n" ); } } // This code is contributed by aashish1995 |
Python3
# Python3 program to find length of # the longest valid substring def findMaxLen(s): if ( len (s) < = 1 ): return 0 # Initialize curMax to zero curMax = 0 longest = [ 0 ] * ( len (s)) # Iterate over the string starting # from second index for i in range ( 1 , len (s)): if ((s[i] = = ')' and i - longest[i - 1 ] - 1 > = 0 and s[i - longest[i - 1 ] - 1 ] = = '(' )): longest[i] = longest[i - 1 ] + 2 if (i - longest[i - 1 ] - 2 > = 0 ): longest[i] + = (longest[i - longest[i - 1 ] - 2 ]) else : longest[i] + = 0 curMax = max (longest[i], curMax) return curMax # Driver Code if __name__ = = '__main__' : Str = "((()()" # Function call print (findMaxLen( Str )) Str = "()(()))))" # Function call print (findMaxLen( Str )) # This code is contributed by PranchalK |
C#
// C# program to find length of the longest valid // subString using System; public class GFG { static int findMaxLen(String s) { if (s.Length <= 1) return 0; // Initialize curMax to zero int curMax = 0; int [] longest = new int [s.Length]; // Iterate over the String starting from second index for ( int i = 1; i < s.Length; i++) { if (s[i] == ')' && i - longest[i - 1] - 1 >= 0 && s[i - longest[i - 1] - 1] == '(' ) { longest[i] = longest[i - 1] + 2 + ((i - longest[i - 1] - 2 >= 0) ? longest[i - longest[i - 1] - 2] : 0); curMax = Math.Max(longest[i], curMax); } } return curMax; } // Driver code public static void Main(String[] args) { String str = "((()()" ; // Function call Console.Write(findMaxLen(str) + "\n" ); str = "()(()))))" ; // Function call Console.Write(findMaxLen(str) + "\n" ); } } // This code is contributed by aashish1995 |
Javascript
<script> // javascript program to find length of the longest valid // subString function findMaxLen( s) { if (s.length <= 1) return 0; // Initialize curMax to zero var curMax = 0; var longest = Array(s.length).fill(0); // Iterate over the String starting from second index for ( var i = 1; i < s.length; i++) { if (s[i] == ')' && i - longest[i - 1] - 1 >= 0 && s[i - longest[i - 1] - 1] == '(' ) { longest[i] = longest[i - 1] + 2 + ((i - longest[i - 1] - 2 >= 0) ? longest[i - longest[i - 1] - 2] : 0); curMax = Math.max(longest[i], curMax); } } return curMax; } // Driver code var str = "((()()" ; // Function call document.write(findMaxLen(str) + "<br\>" ); str = "()(()))))" ; // Function call document.write(findMaxLen(str) + "<br\>" ); // This code is contributed by umadevi9616 </script> |
4 6
Time Complexity: O(N), here N is the length of string.
Auxiliary Space: O(N)
Thanks to Gaurav Ahirwar and Ekta Goel for suggesting above approach.
Another approach in O(1) auxiliary space and O(N) Time complexity:
- The idea to solve this problem is to traverse the string on and keep track of the count of open parentheses and close parentheses with the help of two counters left and right respectively.
- First, the string is traversed from the left towards the right and for every “(” encountered, the left counter is incremented by 1 and for every “)” the right counter is incremented by 1.
- Whenever the left becomes equal to right, the length of the current valid string is calculated and if it greater than the current longest substring, then value of required longest substring is updated with current string length.
- If the right counter becomes greater than the left counter, then the set of parentheses has become invalid and hence the left and right counters are set to 0.
- After the above process, the string is similarly traversed from right to left and similar procedure is applied.
Below is the implementation of the above approach:
C++
// C++ program to implement the above approach #include <bits/stdc++.h> using namespace std; // Function to return the length of // the longest valid substring int solve(string s, int n) { // Variables for left and right counter. // maxlength to store the maximum length found so far int left = 0, right = 0, maxlength = 0; // Iterating the string from left to right for ( int i = 0; i < n; i++) { // If "(" is encountered, // then left counter is incremented // else right counter is incremented if (s[i] == '(' ) left++; else right++; // Whenever left is equal to right, it signifies // that the subsequence is valid and if (left == right) maxlength = max(maxlength, 2 * right); // Resetting the counters when the subsequence // becomes invalid else if (right > left) left = right = 0; } left = right = 0; // Iterating the string from right to left for ( int i = n - 1; i >= 0; i--) { // If "(" is encountered, // then left counter is incremented // else right counter is incremented if (s[i] == '(' ) left++; else right++; // Whenever left is equal to right, it signifies // that the subsequence is valid and if (left == right) maxlength = max(maxlength, 2 * left); // Resetting the counters when the subsequence // becomes invalid else if (left > right) left = right = 0; } return maxlength; } //A much shorter and concise version of the above code int solve2(string s, int n){ int left=0,right=0,maxlength=0,t=2; while (t--){ left=0; right=0; for ( int i=0;i<n;i++){ if (s[i]== '(' )left++; else right++; if (left==right){ maxlength=max(maxlength,2*left); } //when travelling from 0 to n-1 if (t%2==1 && right>left){ left=0; right=0; } //when travelling from n-1 to 0 if (t%2==0 && left>right){ left=0; right=0; } } //now we need to do the same thing from the other side; reverse(s.begin(),s.end()); } return maxlength; } // Driver code int main() { // Function call cout << solve( "((()()()()(((())" , 16); return 0; } |
Java
// Java program to implement the above approach import java.util.Scanner; import java.util.Arrays; class GFG { // Function to return the length // of the longest valid substring public static int solve(String s, int n) { // Variables for left and right // counter maxlength to store // the maximum length found so far int left = 0 , right = 0 ; int maxlength = 0 ; // Iterating the string from left to right for ( int i = 0 ; i < n; i++) { // If "(" is encountered, then // left counter is incremented // else right counter is incremented if (s.charAt(i) == '(' ) left++; else right++; // Whenever left is equal to right, // it signifies that the subsequence // is valid and if (left == right) maxlength = Math.max(maxlength, 2 * right); // Resetting the counters when the // subsequence becomes invalid else if (right > left) left = right = 0 ; } left = right = 0 ; // Iterating the string from right to left for ( int i = n - 1 ; i >= 0 ; i--) { // If "(" is encountered, then // left counter is incremented // else right counter is incremented if (s.charAt(i) == '(' ) left++; else right++; // Whenever left is equal to right, // it signifies that the subsequence // is valid and if (left == right) maxlength = Math.max(maxlength, 2 * left); // Resetting the counters when the // subsequence becomes invalid else if (left > right) left = right = 0 ; } return maxlength; } // Driver code public static void main(String args[]) { // Function call System.out.print(solve( "((()()()()(((())" , 16 )); } } // This code is contributed by SoumikMondal |
Python3
# Python3 program to implement the above approach # Function to return the length of # the longest valid substring def solve(s, n): # Variables for left and right counter. # maxlength to store the maximum length found so far left = 0 right = 0 maxlength = 0 # Iterating the string from left to right for i in range (n): # If "(" is encountered, # then left counter is incremented # else right counter is incremented if (s[i] = = '(' ): left + = 1 else : right + = 1 # Whenever left is equal to right, it signifies # that the subsequence is valid and if (left = = right): maxlength = max (maxlength, 2 * right) # Resetting the counters when the subsequence # becomes invalid elif (right > left): left = right = 0 left = right = 0 # Iterating the string from right to left for i in range (n - 1 , - 1 , - 1 ): # If "(" is encountered, # then left counter is incremented # else right counter is incremented if (s[i] = = '(' ): left + = 1 else : right + = 1 # Whenever left is equal to right, it signifies # that the subsequence is valid and if (left = = right): maxlength = max (maxlength, 2 * left) # Resetting the counters when the subsequence # becomes invalid elif (left > right): left = right = 0 return maxlength # Driver code # Function call print (solve( "((()()()()(((())" , 16 )) # This code is contributed by shubhamsingh10 |
C#
// C# program to implement the above approach using System; public class GFG { // Function to return the length // of the longest valid substring public static int solve(String s, int n) { // Variables for left and right // counter maxlength to store // the maximum length found so far int left = 0, right = 0; int maxlength = 0; // Iterating the string from left to right for ( int i = 0; i < n; i++) { // If "(" is encountered, then // left counter is incremented // else right counter is incremented if (s[i] == '(' ) left++; else right++; // Whenever left is equal to right, // it signifies that the subsequence // is valid and if (left == right) maxlength = Math.Max(maxlength, 2 * right); // Resetting the counters when the // subsequence becomes invalid else if (right > left) left = right = 0; } left = right = 0; // Iterating the string from right to left for ( int i = n - 1; i >= 0; i--) { // If "(" is encountered, then // left counter is incremented // else right counter is incremented if (s[i] == '(' ) left++; else right++; // Whenever left is equal to right, // it signifies that the subsequence // is valid and if (left == right) maxlength = Math.Max(maxlength, 2 * left); // Resetting the counters when the // subsequence becomes invalid else if (left > right) left = right = 0; } return maxlength; } // Driver code public static void Main(String []args) { // Function call Console.Write(solve( "((()()()()(((())" , 16)); } } // This code is contributed by Rajput-Ji |
Javascript
<script> // JavaScript program to implement the above approach // Function to return the length of // the longest valid substring function solve(s, n) { // Variables for left and right counter. // maxlength to store the maximum length found so far let left = 0, right = 0, maxlength = 0; // Iterating the string from left to right for (let i = 0; i < n; i++) { // If "(" is encountered, // then left counter is incremented // else right counter is incremented if (s[i] == '(' ) left++; else right++; // Whenever left is equal to right, it signifies // that the subsequence is valid and if (left == right) maxlength = max(maxlength, 2 * right); // Resetting the counters when the subsequence // becomes invalid else if (right > left) left = right = 0; } left = right = 0; // Iterating the string from right to left for (let i = n - 1; i >= 0; i--) { // If "(" is encountered, // then left counter is incremented // else right counter is incremented if (s[i] == '(' ) left++; else right++; // Whenever left is equal to right, it signifies // that the subsequence is valid and if (left == right) maxlength = Math.max(maxlength, 2 * left); // Resetting the counters when the subsequence // becomes invalid else if (left > right) left = right = 0; } return maxlength; } // Driver code // Function call document.write( solve( "((()()()()(((())" , 16)); //This code is contributed by Manoj </script> |
8
Time Complexity: O(N), here N is the length of string.
Auxiliary Space: O(1)
Another Approach (Using Memoization):
Intuition:
The problem statement is asking for the length of the longest valid parentheses substring. One way to think about this problem is that for every ‘(‘ we encounter, we need a corresponding ‘)’ somewhere else in the string to form a valid parentheses pair. Therefore, a valid substring must start with an ‘(‘ and end with a ‘)’, and any number of valid parentheses pairs can be in between.
Approach:
The approach used here is to use a stack to keep track of the indexes of the characters in the input string. When a ‘(‘ character is encountered, its index is pushed onto the stack. When a ‘)’ character is encountered, the top index on the stack is popped. The difference between the current index and the top index on the stack represents the length of a valid substring ending at the current index. If the stack is empty after a ‘)’ is popped, it means that no matching ‘(‘ has been found, so the current index is pushed onto the stack as the new base for future valid substrings. By doing so, the solution keeps track of the potential valid parentheses starts and ends, and makes use of the property that any valid parentheses substring must be closed by an earlier opened one. Finally, the algorithm returns the max length at the end of the loop.
Idea : try to break in smaller sub problem .
case 1: string ends at “()”
longestParenEnding(0, i) = longestParenEnding(0, i – 2) + 2case 2: string ends with “))” for example “()(())”
longestParenEnding(0, i) =case 3: string ends with “(“
longestParenEnding(0, i) = 0
C++
// C++ program to implement the above approach #include <bits/stdc++.h> using namespace std; // Function to return the length of // the longest valid substring int lonParen( int i, string& s, vector< int >& memo) { // base condition if (i <= 0) { return 0; } // checking if value already present in the dp array if (memo[i] != -1) { return memo[i]; } // check for beginning bracket if (s[i] == '(' ) { memo[i] = 0; } // check if beginning and ending brackets satisfy else if (s[i] == ')' && s[i - 1] == '(' ) { memo[i] = lonParen(i - 2, s, memo) + 2; } // check if the bracket at the ith position is same as // bracket at i-1th position else if (s[i] == ')' && s[i - 1] == ')' ) { int len = lonParen(i - 1, s, memo); if (i - 1 - len >= 0 && s[i - 1 - len] == '(' ) { memo[i] = len + 2 + lonParen(i - len - 2, s, memo); } else { // if none of the condition satisfy store 0 in // the dp array memo[i] = 0; } } // return the value at the last index return memo[i]; } int longestValidParentheses(string s) { int n = s.size(), maxLen = 0; // dp vector for storing the results vector< int > memo(n, -1); // getting the maximum length for ( int i = 0; i < n; i++) { maxLen = max(maxLen, lonParen(i, s, memo)); } // return the maximum length return maxLen; } // Driver code int main() { // Function call cout << longestValidParentheses( "((()()()()(((())" ); return 0; } |
Java
import java.util.Arrays; public class Main { // Function to return the length of the longest valid substring public static int longestValidParentheses(String s) { int n = s.length(); int maxLen = 0 ; int [] memo = new int [n]; Arrays.fill(memo, - 1 ); // Iterate through each character in the input string for ( int i = 0 ; i < n; i++) { // Update maxLen with the maximum length of valid parentheses encountered so far maxLen = Math.max(maxLen, lonParen(i, s, memo)); } return maxLen; // Return the length of the longest valid substring } // Function to calculate the length of the longest valid parentheses substring ending at index i public static int lonParen( int i, String s, int [] memo) { if (i <= 0 ) { return 0 ; // If index i is less than or equal to 0, the substring cannot be valid } if (memo[i] != - 1 ) { return memo[i]; // If the length has already been memoized, return the memoized value } if (s.charAt(i) == '(' ) { memo[i] = 0 ; // If the current character is '(', the substring cannot be valid } else if (s.charAt(i) == ')' && s.charAt(i - 1 ) == '(' ) { // If the current character is ')' and the previous character is '(', we have a valid pair // The length of the valid substring ending at index i is the length of the valid substring ending at index i-2 plus 2 memo[i] = lonParen(i - 2 , s, memo) + 2 ; } else if (s.charAt(i) == ')' && s.charAt(i - 1 ) == ')' ) { // If the current character is ')' and the previous character is ')' // We need to check if there is a valid substring ending at index i-1 int len = lonParen(i - 1 , s, memo); if (i - 1 - len >= 0 && s.charAt(i - 1 - len) == '(' ) { // If there is a valid substring ending at index i-1 and the character before it is '(', we have a valid pair // The length of the valid substring ending at index i is the length of the valid substring ending at index i-1 // plus 2 plus the length of the valid substring ending at index i-len-2 memo[i] = len + 2 + lonParen(i - len - 2 , s, memo); } else { memo[i] = 0 ; // If there is no valid substring ending at index i-1, the substring cannot be valid } } return memo[i]; // Return the length of the longest valid parentheses substring ending at index i } public static void main(String[] args) { System.out.println(longestValidParentheses( "((()()()()(((())" )); // Test the function with an example input } } |
8
Time complexity: O(n),Here, The algorithm has a time complexity of O(n) because it simply iterates the string once.
Auxiliary Space: O(n),Space complexity is O(n) because it uses a stack to keep track of the indexes of the characters in the input string.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!